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Instruction Set

 The repertoire of instructions of a computer
 Different computers have different instruction 

sets
• But with many aspects in common

 Early computers had very simple instruction sets
• Simplified implementation

 Many modern computers also have simple 
instruction sets

§2.1 Introduction



Instruction Set Architecture (ISA)
 ISA, or simply architecture – the abstract interface 

between the hardware and the lowest level software 
that encompasses all the information necessary to write 
a machine language program, including instructions, 
registers, memory access, I/O, …
• Enables implementations of varing cost and performance to 

run identical software
 The combination of the basic instruction set (the ISA) 

and the operating system interface is called the 
application binary interface (ABI)
• ABI – The user portion of the instruction set plus the 

operating system interfaces used by application programmers. 
Defines a standard for binary portability across computers.

§2.1 Introduction



The MIPS Instruction Set

 Used as the example throughout the book
 Stanford MIPS commercialized by MIPS 

Technologies (www.mips.com)
 Large share of embedded core market

• Applications in consumer electronics, network/storage 
equipment, cameras, printers, …

 Typical of many modern ISAs
• See MIPS Reference Data tear-out card, and 

Appendixes B and E

http://www.mips.com/


Arithmetic Operations

 Add and subtract, three operands
• Two sources and one destination
add a, b, c  # a gets b + c

 All arithmetic operations have this form
 Design Principle 1: Simplicity favours regularity

• Regularity makes implementation simpler
• Simplicity enables higher performance at lower cost
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Arithmetic Example

 C code:

f = (g + h) - (i + j);

 Compiled MIPS code:

add t0, g, h   # temp t0 = g + h
add t1, i, j   # temp t1 = i + j
sub f, t0, t1  # f = t0 - t1



Register Operands

 Arithmetic instructions use register
operands

 MIPS has a 32 × 32-bit register file
• Use for frequently accessed data
• Numbered 0 to 31
• 32-bit data called a “word”

 Assembler names
• $t0, $t1, …, $t9 for temporary values
• $s0, $s1, …, $s7 for saved variables

 Design Principle 2: Smaller is faster
• c.f. main memory: millions of locations
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Register Operand Example

 C code:
f = (g + h) - (i + j);
• f, …, j in $s0, …, $s4

 Compiled MIPS code:
add $t0, $s1, $s2
add $t1, $s3, $s4
sub $s0, $t0, $t1



Byte Addresses
 Since 8-bit bytes are so useful, most architectures 

address individual bytes in memory
• Alignment restriction – the memory address of a 
word must be on natural word boundaries (a 
multiple of 4 MIPS-32)

 Big Endian: leftmost byte  is word address
• IBM 360/370, Motorola 68k, MIPS, Sparc, HP PA

 Little Endian : rightmost byte is word address
• Intel 80x86, DEC Vax, DEC Alpha (Windows NT)

3 2 1 0
msb lsb

Little endian byte 0

big endian byte 0
0 1 2 3



Memory Operands

 Main memory used for composite data
• Arrays, structures, dynamic data

 To apply arithmetic operations
• Load values from memory into registers
• Store result from register to memory

 Memory is byte addressed
• Each address identifies an 8-bit byte

 Words are aligned in memory
• Address must be a multiple of 4

 MIPS is Big Endian
• Most-significant byte at least address of a word
• c.f. Little Endian: least-significant byte at least address



Memory Operand Example 1

 C code:
g = h + A[8];
• g in $s1, h in $s2, base address of A in $s3

 Compiled MIPS code:
• Index 8 requires offset of 32

 4 bytes per word
lw  $t0, 32($s3)    # load word
add $s1, $s2, $t0

offse
t

base register



Memory Operand Example 2

 C code:
A[12] = h + A[8];
• h in $s2, base address of A in $s3

 Compiled MIPS code:
• Index 8 requires offset of 32
lw  $t0, 32($s3)    # load word
add $t0, $s2, $t0
sw  $t0, 48($s3)    # store word



Registers vs. Memory

 Registers are faster to access than memory
 Operating on memory data requires loads and 

stores
• More instructions to be executed

 Compiler must use registers for variables as much 
as possible
• Only spill to memory for less frequently used variables
• Register optimization is important!



MIPS Register File
 Holds thirty-two 32-bit registers

• Two read ports and
• One write port

 Registers are
• Faster the main memory

 But register files with more locations are slower (e.g., a 64 
word file could be as much as 50% slower than a word file)

 Read/Write port increase impacts speed quadractically
• Easier for a compiler to use

 e.g, (A*B) - (C*D) - (E*F) can do multiplies in any order vs. 
stack

• Can hold variables so that
 Cod density improves (since register are named with fewer 

bits than memory location)



MIPS Register Convention



Immediate Operands

 Constant data specified in an instruction
addi $s3, $s3, 4

 No subtract immediate instruction
• Just use a negative constant
addi $s2, $s1, -1

 Design Principle 3: Make the common case fast
• Small constants are common
• Immediate operand avoids a load instruction



The Constant Zero

 MIPS register 0 ($zero) is the constant 0
• Cannot be overwritten

 Useful for common operations
• E.g., move between registers
add $t2, $s1, $zero



Unsigned Binary Integers
 Given an n-bit number

0
0

1
1

2n
2n

1n
1n 2x2x2x2xx ++++= −

−
−

− 

 Range: 0 to +2n – 1
 Example

 0000 0000 0000 0000 0000 0000 0000 10112
= 0 + … + 1×23 + 0×22 +1×21 +1×20

= 0 + … + 8 + 0 + 2 + 1 = 1110

 Using 32 bits
 0 to +4,294,967,295

§2.4 Signed and U
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2s-Complement Signed Integers
 Given an n-bit number

0
0

1
1

2n
2n

1n
1n 2x2x2x2xx ++++−= −

−
−

− 

 Range: –2n – 1 to +2n – 1 – 1
 Example

 1111 1111 1111 1111 1111 1111 1111 11002
= –1×231 + 1×230 + … + 1×22 +0×21 +0×20

= –2,147,483,648 + 2,147,483,644 = –410

 Using 32 bits
 –2,147,483,648 to +2,147,483,647



2s-Complement Signed Integers

 Bit 31 is sign bit
• 1 for negative numbers
• 0 for non-negative numbers

 –(–2n – 1) can’t be represented
 Non-negative numbers have the same unsigned 

and 2s-complement representation
 Some specific numbers

• 0: 0000 0000 … 0000
• –1: 1111 1111 … 1111
• Most-negative: 1000 0000 … 0000
• Most-positive: 0111 1111 … 1111



Signed Negation
 Complement and add 1

• Complement means 1 → 0, 0 → 1

x1x

11111...111xx 2

−=+

−==+

 Example: negate +2
 +2 = 0000 0000 … 00102

 –2 = 1111 1111 … 11012 + 1
= 1111 1111 … 11102



Sign Extension

 Representing a number using more bits
• Preserve the numeric value

 In MIPS instruction set
• addi: extend immediate value
• lb, lh: extend loaded byte/halfword
• beq, bne: extend the displacement

 Replicate the sign bit to the left
• c.f. unsigned values: extend with 0s

 Examples: 8-bit to 16-bit
• +2: 0000 0010 => 0000 0000 0000 0010
• –2: 1111 1110 => 1111 1111 1111 1110



Representing Instructions

 Instructions are encoded in binary
• Called machine code

 MIPS instructions
• Encoded as 32-bit instruction words
• Small number of formats encoding operation code 

(opcode), register numbers, …
• Regularity!

 Register numbers
• $t0 – $t7 are reg’s 8 – 15
• $t8 – $t9 are reg’s 24 – 25
• $s0 – $s7 are reg’s 16 – 23

§2.5 R
epresenting Instructions in the C
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MIPS R-format Instructions

 Instruction fields
• op: operation code (opcode)
• rs: first source register number
• rt: second source register number
• rd: destination register number
• shamt: shift amount (00000 for now)
• funct: function code (extends opcode)

op rs rt rd shamt funct
6 bits 6 bits5 bits 5 bits 5 bits 5 bits



R-format Example

add $t0, $s1, $s2

special $s1 $s2 $t0 0 add

0 17 18 8 0 32

000000 10001 10010 01000 00000 100000

000000100011001001000000001000002 = 0232402016

op rs rt rd shamt funct
6 bits 6 bits5 bits 5 bits 5 bits 5 bits



Hexadecimal
 Base 16

• Compact representation of bit strings
• 4 bits per hex digit

0 0000 4 0100 8 1000 c 1100
1 0001 5 0101 9 1001 d 1101
2 0010 6 0110 a 1010 e 1110
3 0011 7 0111 b 1011 f 1111

 Example: eca8 6420
 1110 1100 1010 1000 0110 0100 0010 0000



MIPS I-format Instructions

 Immediate arithmetic and load/store instructions
• rt: destination or source register number
• Constant: –215 to +215 – 1
• Address: offset added to base address in rs

 Design Principle 4: Good design demands good 
compromises
• Different formats complicate decoding, but allow 32-bit 

instructions uniformly
• Keep formats as similar as possible

op rs rt constant or address
6 bits 5 bits 5 bits 16 bits



Stored Program Computers
 Instructions represented in 

binary, just like data
 Instructions and data stored in 

memory
 Programs can operate on 

programs
• e.g., compilers, linkers, …

 Binary compatibility allows 
compiled programs to work on 
different computers
• Standardized ISAs

The BIG Picture



Logical Operations
 Instructions for bitwise manipulation

Operation C Java MIPS
Shift left << << sll

Shift right >> >>> srl

Bitwise AND & & and, andi

Bitwise OR | | or, ori

Bitwise NOT ~ ~ nor

 Useful for extracting and inserting 
groups of bits in a word

§2.6 Logical O
perations



Shift Operations

 shamt: how many positions to shift 
 Shift left logical

• Shift left and fill with 0 bits
• sll by i bits multiplies by 2i

 Shift right logical
• Shift right and fill with 0 bits
• srl by i bits divides by 2i (unsigned only)

op rs rt rd shamt funct
6 bits 6 bits5 bits 5 bits 5 bits 5 bits



AND Operations
 Useful to mask bits in a word

• Select some bits, clear others to 0

and $t0, $t1, $t2

0000 0000 0000 0000 0000 1101 1100 0000

0000 0000 0000 0000 0011 1100 0000 0000

$t2

$t1

0000 0000 0000 0000 0000 1100 0000 0000$t0



OR Operations
 Useful to include bits in a word

• Set some bits to 1, leave others unchanged

or $t0, $t1, $t2

0000 0000 0000 0000 0000 1101 1100 0000

0000 0000 0000 0000 0011 1100 0000 0000

$t2

$t1

0000 0000 0000 0000 0011 1101 1100 0000$t0



NOT Operations
 Useful to invert bits in a word

• Change 0 to 1, and 1 to 0
 MIPS has NOR 3-operand instruction

• a NOR b == NOT ( a OR b )

nor $t0, $t1, $zero

0000 0000 0000 0000 0011 1100 0000 0000$t1

1111 1111 1111 1111 1100 0011 1111 1111$t0

Register 0: always 
read as zero



Conditional Operations

 Branch to a labeled instruction if a condition is true
• Otherwise, continue sequentially

 beq rs, rt, L1
• if (rs == rt) branch to instruction labeled L1;

 bne rs, rt, L1
• if (rs != rt) branch to instruction labeled L1;

 j L1
• unconditional jump to instruction labeled L1

§2.7 Instructions for M
aking D
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Compiling If Statements

 C code:

if (i==j) f = g+h;
else f = g-h;

• f, g, … in $s0, $s1, …
 Compiled MIPS code:

bne $s3, $s4, Else
add $s0, $s1, $s2
j   Exit

Else: sub $s0, $s1, $s2
Exit: …

Assembler calculates addresses



Compiling Loop Statements

 C code:

while (save[i] == k) i += 1;

• i in $s3, k in $s5, address of save in $s6
 Compiled MIPS code:

Loop: sll  $t1, $s3, 2
add  $t1, $t1, $s6
lw   $t0, 0($t1)
bne  $t0, $s5, Exit
addi $s3, $s3, 1
j    Loop

Exit: …



Basic Blocks
 A basic block is a sequence of instructions with

• No embedded branches (except at end)
• No branch targets (except at beginning)

 A compiler identifies basic 
blocks for optimization

 An advanced processor 
can accelerate execution 
of basic blocks



More Conditional Operations

 Set result to 1 if a condition is true
• Otherwise, set to 0

 slt rd, rs, rt
• if (rs < rt) rd = 1; else rd = 0;

 slti rt, rs, constant
• if (rs < constant) rt = 1; else rt = 0;

 Use in combination with beq, bne
slt $t0, $s1, $s2  # if ($s1 < $s2)
bne $t0, $zero, L  #   branch to L



Branch Instruction Design

 Why not blt, bge, etc?
 Hardware for <, ≥, … slower than =, ≠

• Combining with branch involves more work per 
instruction, requiring a slower clock

• All instructions penalized!
 beq and bne are the common case
 This is a good design compromise



Signed vs. Unsigned

 Signed comparison: slt, slti
 Unsigned comparison: sltu, sltui
 Example

• $s0 = 1111 1111 1111 1111 1111 1111 1111 1111
• $s1 = 0000 0000 0000 0000 0000 0000 0000 0001
• slt  $t0, $s0, $s1  # signed

 –1 < +1 ⇒ $t0 = 1
• sltu $t0, $s0, $s1  # unsigned

 +4,294,967,295 > +1 ⇒ $t0 = 0
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