
Hanyang University – Computer Architecture [2019]

Instructions: Language of the
Computer

Computer Architecture

2019 1학기

한양대학교공과대학컴퓨터소프트웨어학부
홍석준

Instruction Set

 The repertoire of instructions of a computer
 Different computers have different instruction

sets
• But with many aspects in common

 Early computers had very simple instruction sets
• Simplified implementation

 Many modern computers also have simple
instruction sets

§2.1 Introduction

Instruction Set Architecture (ISA)
 ISA, or simply architecture – the abstract interface

between the hardware and the lowest level software
that encompasses all the information necessary to write
a machine language program, including instructions,
registers, memory access, I/O, …
• Enables implementations of varing cost and performance to

run identical software
 The combination of the basic instruction set (the ISA)

and the operating system interface is called the
application binary interface (ABI)
• ABI – The user portion of the instruction set plus the

operating system interfaces used by application programmers.
Defines a standard for binary portability across computers.

§2.1 Introduction

The MIPS Instruction Set

 Used as the example throughout the book
 Stanford MIPS commercialized by MIPS

Technologies (www.mips.com)
 Large share of embedded core market

• Applications in consumer electronics, network/storage
equipment, cameras, printers, …

 Typical of many modern ISAs
• See MIPS Reference Data tear-out card, and

Appendixes B and E

http://www.mips.com/

Arithmetic Operations

 Add and subtract, three operands
• Two sources and one destination
add a, b, c # a gets b + c

 All arithmetic operations have this form
 Design Principle 1: Simplicity favours regularity

• Regularity makes implementation simpler
• Simplicity enables higher performance at lower cost

§2.2 O
perations of the C

om
puter H

ardw
are

Arithmetic Example

 C code:

f = (g + h) - (i + j);

 Compiled MIPS code:

add t0, g, h # temp t0 = g + h
add t1, i, j # temp t1 = i + j
sub f, t0, t1 # f = t0 - t1

Register Operands

 Arithmetic instructions use register
operands

 MIPS has a 32 × 32-bit register file
• Use for frequently accessed data
• Numbered 0 to 31
• 32-bit data called a “word”

 Assembler names
• $t0, $t1, …, $t9 for temporary values
• $s0, $s1, …, $s7 for saved variables

 Design Principle 2: Smaller is faster
• c.f. main memory: millions of locations

§2.3 O
perands of the C

om
puter H

ardw
are

Register Operand Example

 C code:
f = (g + h) - (i + j);
• f, …, j in $s0, …, $s4

 Compiled MIPS code:
add $t0, $s1, $s2
add $t1, $s3, $s4
sub $s0, $t0, $t1

Byte Addresses
 Since 8-bit bytes are so useful, most architectures

address individual bytes in memory
• Alignment restriction – the memory address of a
word must be on natural word boundaries (a
multiple of 4 MIPS-32)

 Big Endian: leftmost byte is word address
• IBM 360/370, Motorola 68k, MIPS, Sparc, HP PA

 Little Endian : rightmost byte is word address
• Intel 80x86, DEC Vax, DEC Alpha (Windows NT)

3 2 1 0
msb lsb

Little endian byte 0

big endian byte 0
0 1 2 3

Memory Operands

 Main memory used for composite data
• Arrays, structures, dynamic data

 To apply arithmetic operations
• Load values from memory into registers
• Store result from register to memory

 Memory is byte addressed
• Each address identifies an 8-bit byte

 Words are aligned in memory
• Address must be a multiple of 4

 MIPS is Big Endian
• Most-significant byte at least address of a word
• c.f. Little Endian: least-significant byte at least address

Memory Operand Example 1

 C code:
g = h + A[8];
• g in $s1, h in $s2, base address of A in $s3

 Compiled MIPS code:
• Index 8 requires offset of 32

 4 bytes per word
lw $t0, 32($s3) # load word
add $s1, $s2, $t0

offse
t

base register

Memory Operand Example 2

 C code:
A[12] = h + A[8];
• h in $s2, base address of A in $s3

 Compiled MIPS code:
• Index 8 requires offset of 32
lw $t0, 32($s3) # load word
add $t0, $s2, $t0
sw $t0, 48($s3) # store word

Registers vs. Memory

 Registers are faster to access than memory
 Operating on memory data requires loads and

stores
• More instructions to be executed

 Compiler must use registers for variables as much
as possible
• Only spill to memory for less frequently used variables
• Register optimization is important!

MIPS Register File
 Holds thirty-two 32-bit registers

• Two read ports and
• One write port

 Registers are
• Faster the main memory

 But register files with more locations are slower (e.g., a 64
word file could be as much as 50% slower than a word file)

 Read/Write port increase impacts speed quadractically
• Easier for a compiler to use

 e.g, (A*B) - (C*D) - (E*F) can do multiplies in any order vs.
stack

• Can hold variables so that
 Cod density improves (since register are named with fewer

bits than memory location)

MIPS Register Convention

Immediate Operands

 Constant data specified in an instruction
addi $s3, $s3, 4

 No subtract immediate instruction
• Just use a negative constant
addi $s2, $s1, -1

 Design Principle 3: Make the common case fast
• Small constants are common
• Immediate operand avoids a load instruction

The Constant Zero

 MIPS register 0 ($zero) is the constant 0
• Cannot be overwritten

 Useful for common operations
• E.g., move between registers
add $t2, $s1, $zero

Unsigned Binary Integers
 Given an n-bit number

0
0

1
1

2n
2n

1n
1n 2x2x2x2xx ++++= −

−
−

− 

 Range: 0 to +2n – 1
 Example

 0000 0000 0000 0000 0000 0000 0000 10112
= 0 + … + 1×23 + 0×22 +1×21 +1×20

= 0 + … + 8 + 0 + 2 + 1 = 1110

 Using 32 bits
 0 to +4,294,967,295

§2.4 Signed and U
nsigned N

um
bers

2s-Complement Signed Integers
 Given an n-bit number

0
0

1
1

2n
2n

1n
1n 2x2x2x2xx ++++−= −

−
−

− 

 Range: –2n – 1 to +2n – 1 – 1
 Example

 1111 1111 1111 1111 1111 1111 1111 11002
= –1×231 + 1×230 + … + 1×22 +0×21 +0×20

= –2,147,483,648 + 2,147,483,644 = –410

 Using 32 bits
 –2,147,483,648 to +2,147,483,647

2s-Complement Signed Integers

 Bit 31 is sign bit
• 1 for negative numbers
• 0 for non-negative numbers

 –(–2n – 1) can’t be represented
 Non-negative numbers have the same unsigned

and 2s-complement representation
 Some specific numbers

• 0: 0000 0000 … 0000
• –1: 1111 1111 … 1111
• Most-negative: 1000 0000 … 0000
• Most-positive: 0111 1111 … 1111

Signed Negation
 Complement and add 1

• Complement means 1 → 0, 0 → 1

x1x

11111...111xx 2

−=+

−==+

 Example: negate +2
 +2 = 0000 0000 … 00102

 –2 = 1111 1111 … 11012 + 1
= 1111 1111 … 11102

Sign Extension

 Representing a number using more bits
• Preserve the numeric value

 In MIPS instruction set
• addi: extend immediate value
• lb, lh: extend loaded byte/halfword
• beq, bne: extend the displacement

 Replicate the sign bit to the left
• c.f. unsigned values: extend with 0s

 Examples: 8-bit to 16-bit
• +2: 0000 0010 => 0000 0000 0000 0010
• –2: 1111 1110 => 1111 1111 1111 1110

Representing Instructions

 Instructions are encoded in binary
• Called machine code

 MIPS instructions
• Encoded as 32-bit instruction words
• Small number of formats encoding operation code

(opcode), register numbers, …
• Regularity!

 Register numbers
• $t0 – $t7 are reg’s 8 – 15
• $t8 – $t9 are reg’s 24 – 25
• $s0 – $s7 are reg’s 16 – 23

§2.5 R
epresenting Instructions in the C

om
puter

MIPS R-format Instructions

 Instruction fields
• op: operation code (opcode)
• rs: first source register number
• rt: second source register number
• rd: destination register number
• shamt: shift amount (00000 for now)
• funct: function code (extends opcode)

op rs rt rd shamt funct
6 bits 6 bits5 bits 5 bits 5 bits 5 bits

R-format Example

add $t0, $s1, $s2

special $s1 $s2 $t0 0 add

0 17 18 8 0 32

000000 10001 10010 01000 00000 100000

000000100011001001000000001000002 = 0232402016

op rs rt rd shamt funct
6 bits 6 bits5 bits 5 bits 5 bits 5 bits

Hexadecimal
 Base 16

• Compact representation of bit strings
• 4 bits per hex digit

0 0000 4 0100 8 1000 c 1100
1 0001 5 0101 9 1001 d 1101
2 0010 6 0110 a 1010 e 1110
3 0011 7 0111 b 1011 f 1111

 Example: eca8 6420
 1110 1100 1010 1000 0110 0100 0010 0000

MIPS I-format Instructions

 Immediate arithmetic and load/store instructions
• rt: destination or source register number
• Constant: –215 to +215 – 1
• Address: offset added to base address in rs

 Design Principle 4: Good design demands good
compromises
• Different formats complicate decoding, but allow 32-bit

instructions uniformly
• Keep formats as similar as possible

op rs rt constant or address
6 bits 5 bits 5 bits 16 bits

Stored Program Computers
 Instructions represented in

binary, just like data
 Instructions and data stored in

memory
 Programs can operate on

programs
• e.g., compilers, linkers, …

 Binary compatibility allows
compiled programs to work on
different computers
• Standardized ISAs

The BIG Picture

Logical Operations
 Instructions for bitwise manipulation

Operation C Java MIPS
Shift left << << sll

Shift right >> >>> srl

Bitwise AND & & and, andi

Bitwise OR | | or, ori

Bitwise NOT ~ ~ nor

 Useful for extracting and inserting
groups of bits in a word

§2.6 Logical O
perations

Shift Operations

 shamt: how many positions to shift
 Shift left logical

• Shift left and fill with 0 bits
• sll by i bits multiplies by 2i

 Shift right logical
• Shift right and fill with 0 bits
• srl by i bits divides by 2i (unsigned only)

op rs rt rd shamt funct
6 bits 6 bits5 bits 5 bits 5 bits 5 bits

AND Operations
 Useful to mask bits in a word

• Select some bits, clear others to 0

and $t0, $t1, $t2

0000 0000 0000 0000 0000 1101 1100 0000

0000 0000 0000 0000 0011 1100 0000 0000

$t2

$t1

0000 0000 0000 0000 0000 1100 0000 0000$t0

OR Operations
 Useful to include bits in a word

• Set some bits to 1, leave others unchanged

or $t0, $t1, $t2

0000 0000 0000 0000 0000 1101 1100 0000

0000 0000 0000 0000 0011 1100 0000 0000

$t2

$t1

0000 0000 0000 0000 0011 1101 1100 0000$t0

NOT Operations
 Useful to invert bits in a word

• Change 0 to 1, and 1 to 0
 MIPS has NOR 3-operand instruction

• a NOR b == NOT (a OR b)

nor $t0, $t1, $zero

0000 0000 0000 0000 0011 1100 0000 0000$t1

1111 1111 1111 1111 1100 0011 1111 1111$t0

Register 0: always
read as zero

Conditional Operations

 Branch to a labeled instruction if a condition is true
• Otherwise, continue sequentially

 beq rs, rt, L1
• if (rs == rt) branch to instruction labeled L1;

 bne rs, rt, L1
• if (rs != rt) branch to instruction labeled L1;

 j L1
• unconditional jump to instruction labeled L1

§2.7 Instructions for M
aking D

ecisions

Compiling If Statements

 C code:

if (i==j) f = g+h;
else f = g-h;

• f, g, … in $s0, $s1, …
 Compiled MIPS code:

bne $s3, $s4, Else
add $s0, $s1, $s2
j Exit

Else: sub $s0, $s1, $s2
Exit: …

Assembler calculates addresses

Compiling Loop Statements

 C code:

while (save[i] == k) i += 1;

• i in $s3, k in $s5, address of save in $s6
 Compiled MIPS code:

Loop: sll $t1, $s3, 2
add $t1, $t1, $s6
lw $t0, 0($t1)
bne $t0, $s5, Exit
addi $s3, $s3, 1
j Loop

Exit: …

Basic Blocks
 A basic block is a sequence of instructions with

• No embedded branches (except at end)
• No branch targets (except at beginning)

 A compiler identifies basic
blocks for optimization

 An advanced processor
can accelerate execution
of basic blocks

More Conditional Operations

 Set result to 1 if a condition is true
• Otherwise, set to 0

 slt rd, rs, rt
• if (rs < rt) rd = 1; else rd = 0;

 slti rt, rs, constant
• if (rs < constant) rt = 1; else rt = 0;

 Use in combination with beq, bne
slt $t0, $s1, $s2 # if ($s1 < $s2)
bne $t0, $zero, L # branch to L

Branch Instruction Design

 Why not blt, bge, etc?
 Hardware for <, ≥, … slower than =, ≠

• Combining with branch involves more work per
instruction, requiring a slower clock

• All instructions penalized!
 beq and bne are the common case
 This is a good design compromise

Signed vs. Unsigned

 Signed comparison: slt, slti
 Unsigned comparison: sltu, sltui
 Example

• $s0 = 1111 1111 1111 1111 1111 1111 1111 1111
• $s1 = 0000 0000 0000 0000 0000 0000 0000 0001
• slt $t0, $s0, $s1 # signed

 –1 < +1 ⇒ $t0 = 1
• sltu $t0, $s0, $s1 # unsigned

 +4,294,967,295 > +1 ⇒ $t0 = 0

	Instructions: Language of the Computer
	Instruction Set
	Instruction Set Architecture (ISA)
	The MIPS Instruction Set
	Arithmetic Operations
	Arithmetic Example
	Register Operands
	Register Operand Example
	Byte Addresses
	Memory Operands
	Memory Operand Example 1
	Memory Operand Example 2
	Registers vs. Memory
	MIPS Register File
	MIPS Register Convention
	Immediate Operands
	The Constant Zero
	Unsigned Binary Integers
	2s-Complement Signed Integers
	2s-Complement Signed Integers
	Signed Negation
	Sign Extension
	Representing Instructions
	MIPS R-format Instructions
	R-format Example
	Hexadecimal
	MIPS I-format Instructions
	Stored Program Computers
	Logical Operations
	Shift Operations
	AND Operations
	OR Operations
	NOT Operations
	Conditional Operations
	Compiling If Statements
	Compiling Loop Statements
	Basic Blocks
	More Conditional Operations
	Branch Instruction Design
	Signed vs. Unsigned

