Instructions: Language of the
Computer

Computer Architecture

2019 &7

32-bit Constants

= Most constants are small
e |6-bit immediate is sufficient

" For the occasional 32-bit constant
lurl rt, constant

* Copies |6-bit constant to left |6 bits of rt
e Clears right 16 bits of rt to 0

Ihi $s0, 61 0000 0000 0011 11010000 0000 0000 0000

ori $s0, $s0O, 2304 | 0000 0000 0011 1101|0000 1001 0000 0000

N
=
o
=
U
p)
>
Q.
Q.
(D
)]
25
-
O
—
o
w
b
o
—
=
=
(D
Q.
Q
—
D
0]

Branch Addressing
" Branch instructions specify
e Opcode, two registers, target address

* Most branch targets are near branch
* Forward or backward

op rs rt constant or address

6 bits 5 bits 5 bits 16 bits

PC-relative addressing
Target address = PC + offset X 4
PC already incremented by 4 by this time

Jump Addressing

= Jump (J and jJal) targets could be anywhere in text
segment

e Encode full address in instruction

op address
6 bits 26 bits

(Pseudo)Direct jump addressing
Target address = PC;; ,5: (address X 4)

Target Addressing Example

* Loop code from earlier example

e Assume Loop at location 80000

Loop:

sil
add
Iw
bne
addi

$tl,
$t1,
$t0,
$t0,
$s3,
Loop

$s3, 2
$tl, $s6
o(stl)
$s5, Exit
$s3, 1

80000
v,

80004 |-

80008
80012
80016
80020

80024

0| 0 [19] 9 0
09 220 32
35| 9 | 8

5 “sx’ 21 |

5 19‘£}%Qﬂwﬂ‘

2 7 20000

.
o
s

Branching Far Away

= |f branch target is too far to encode with | 6-bit
offset, assembler rewrites the code

= Example
beq $s0,%$s1, L1

!
bne $s0,%$s1, L2
J L1
L2: ..

Addressing Mode Summary

1. Immediate addressing

op|rs |t Immediate

2. Register addressing

op|rs | rt|rd|...[unct Registers

[

Register

3. Base addressing

op|rs | nt Address Memory
Register [Byte | Halfword Word
I

4. PC-relative addressing

op|rs | nt Address Memory

PC Word

5. Pseudodirect addressing

op Address Memory

PC
|

Word

-

Translation and Startup

C program

—w Many compilers
produce object
Assembly language program odules directly

\

Object: Machine language module | | Object: Library routine (machine language)

> Static

Executable: Machine language program Iln kl n g

/

Memory

2 DUIJBIS pue bune|SURI] ZT 3

Assembler Pseudoinstructions

* Most assembler instructions represent machine
Instructions one-to-one

* Pseudoinstructions: figments of the assembler’s
Imagination

move $tO0, $tl — add $t0, $zero, $tl

blt $t0, $t1, L — slt $at, $t0, $tl
bne $at, $zero, L

e $at (register |): assembler temporary

Producing an Object Module

= Assembler (or compiler) translates program into
machine instructions

* Provides information for building a complete
program from the pieces

Header: described contents of object module
Text segment: translated instructions

Static data segment: data allocated for the life of the
program

Relocation info: for contents that depend on absolute
location of loaded program

Symbol table: global definitions and external refs
Debug info: for associating with source code

Linking Object Modules

* Produces an executable image
Merges segments
Resolve labels (determine their addresses)
Patch location-dependent and external refs

* Could leave location dependencies for fixing by a
relocating loader
e But with virtual memory, no need to do this

* Program can be loaded into absolute location in virtual
memory space

Loading a Program

* Load from image file on disk into memory
Read header to determine segment sizes
Create virtual address space
Copy text and initialized data into memory
= Or set page table entries so they can be faulted in
Set up arguments on stack
Initialize registers (including $sp, $fp, $gp)
Jump to startup routine
= Copies arguments to $a0, ... and calls main
= When main returns, do exit syscall

Dynamic Linking

* Only link/load library procedure when it is called
e Requires procedure code to be relocatable

e Avoids image bloat caused by static linking of all
(transitively) referenced libraries

e Automatically picks up new library versions

Lazy Linkage

Indirection table

Stub: Loads routine ID,
Jump to linker/loader

Linker/loader code

Dynamically
mapped code

o

Text
o &
S
i L&
Data
L, T —
Text
L i 1D
. (e}
|
Text

Dynamic linker/loader
Remap DLL routine

J

LS,

Data/Text

DLL routine

jir

LS,

Text
v L@

\‘Data
o

Text

L DLL routine

ir @

a. First call to DLL routine

b. Subsequent calls to DLL routine

Starting Java Applications

P / -

Class files (Java bytecodes)

Java library routines (machine language)

Just In Time
compiler

Java Virtual Machine

Compiled Java methods (machine language)

	Instructions: Language of the Computer
	32-bit Constants
	Branch Addressing
	Jump Addressing
	Target Addressing Example
	Branching Far Away
	Addressing Mode Summary
	Translation and Startup
	Assembler Pseudoinstructions
	Producing an Object Module
	Linking Object Modules
	Loading a Program
	Dynamic Linking
	Lazy Linkage
	Starting Java Applications

