
Hanyang University – Computer Architecture [2019]

Instructions: Language of the
Computer

Computer Architecture

2019 1학기

한양대학교공과대학컴퓨터소프트웨어학부
홍석준

0000 0000 0011 1101 0000 0000 0000 0000

32-bit Constants
 Most constants are small

• 16-bit immediate is sufficient
 For the occasional 32-bit constant
lui rt, constant
• Copies 16-bit constant to left 16 bits of rt
• Clears right 16 bits of rt to 0

lhi $s0, 61

0000 0000 0011 1101 0000 1001 0000 0000ori $s0, $s0, 2304

§2.10 M
IPS Addressing for 32-Bit Im

m
ediates and

Branch Addressing
 Branch instructions specify

• Opcode, two registers, target address
 Most branch targets are near branch

• Forward or backward

op rs rt constant or address
6 bits 5 bits 5 bits 16 bits

 PC-relative addressing
 Target address = PC + offset × 4
 PC already incremented by 4 by this time

Jump Addressing
 Jump (j and jal) targets could be anywhere in text

segment
• Encode full address in instruction

op address
6 bits 26 bits

 (Pseudo)Direct jump addressing
 Target address = PC31…28 : (address × 4)

Target Addressing Example
 Loop code from earlier example

• Assume Loop at location 80000

Loop: sll $t1, $s3, 2 80000 0 0 19 9 4 0

add $t1, $t1, $s6 80004 0 9 22 9 0 32

lw $t0, 0($t1) 80008 35 9 8 0

bne $t0, $s5, Exit 80012 5 8 21 2

addi $s3, $s3, 1 80016 8 19 19 1

j Loop 80020 2 20000

Exit: … 80024

Branching Far Away

 If branch target is too far to encode with 16-bit
offset, assembler rewrites the code

 Example
beq $s0,$s1, L1

↓
bne $s0,$s1, L2
j L1

L2: …

Addressing Mode Summary

Translation and Startup

Many compilers
produce object
modules directly

Static
linking

§2.12 Translating and Starting a Program

Assembler Pseudoinstructions

 Most assembler instructions represent machine
instructions one-to-one

 Pseudoinstructions: figments of the assembler’s
imagination
move $t0, $t1 → add $t0, $zero, $t1

blt $t0, $t1, L → slt $at, $t0, $t1
bne $at, $zero, L

• $at (register 1): assembler temporary

Producing an Object Module

 Assembler (or compiler) translates program into
machine instructions

 Provides information for building a complete
program from the pieces
• Header: described contents of object module
• Text segment: translated instructions
• Static data segment: data allocated for the life of the

program
• Relocation info: for contents that depend on absolute

location of loaded program
• Symbol table: global definitions and external refs
• Debug info: for associating with source code

Linking Object Modules

 Produces an executable image
1. Merges segments
2. Resolve labels (determine their addresses)
3. Patch location-dependent and external refs

 Could leave location dependencies for fixing by a
relocating loader
• But with virtual memory, no need to do this
• Program can be loaded into absolute location in virtual

memory space

Loading a Program

 Load from image file on disk into memory
1. Read header to determine segment sizes
2. Create virtual address space
3. Copy text and initialized data into memory

 Or set page table entries so they can be faulted in
4. Set up arguments on stack
5. Initialize registers (including $sp, $fp, $gp)
6. Jump to startup routine

 Copies arguments to $a0, … and calls main
 When main returns, do exit syscall

Dynamic Linking

 Only link/load library procedure when it is called
• Requires procedure code to be relocatable
• Avoids image bloat caused by static linking of all

(transitively) referenced libraries
• Automatically picks up new library versions

Lazy Linkage

Indirection table

Stub: Loads routine ID,
Jump to linker/loader

Linker/loader code

Dynamically
mapped code

Starting Java Applications

Simple portable
instruction set for

the JVM

Interprets
bytecodes

Compiles
bytecodes of
“hot” methods

into native
code for host

machine

	Instructions: Language of the Computer
	32-bit Constants
	Branch Addressing
	Jump Addressing
	Target Addressing Example
	Branching Far Away
	Addressing Mode Summary
	Translation and Startup
	Assembler Pseudoinstructions
	Producing an Object Module
	Linking Object Modules
	Loading a Program
	Dynamic Linking
	Lazy Linkage
	Starting Java Applications

