Instructions: Language of the
Computer

Computer Architecture

2019 18H7]

C Sort Example

" [|llustrates use of assembly instructions for a C
bubble sort function

= Swap procedure (leaf)

void swap(int v[], 1nt k)
{

1nt temp;

temp = v[k];

vik] = v[k+1];

vik+1l] = temp;
}

* vin $a0, kin $al, temp in $t0

The Procedure Swap

swap: sl1 $tl1, $al, 2 $tl = k * 4
add $tl, $%$a0, $t1 # $tl = v+(k*4)
(address of v[k])

Tw $t0, 0($tl)
Tw $t2, 4(%$tl)

$t0 (temp) = v[k]
$t2 = v[k+1]

sw $t2, 0($tl)
sw $t0, 4($tl)

vik] = $t2 (v[k+1])
v[ik+1l] = $t0 (temp)

H|H FH [H H|H HH

jr $ra return to calling routine

The Sort Procedure in C

* Non-leaf (calls swap)
voild sort (int v[], 1nt n)
{
int i, j;
for (1 =0; 1 <n; 1 4+=1) {
for (3 =1 - 1;
j >= 0 && v[j] > v[] + 1];
] =1 {
swap (v,]J);
}
}

}
* vin $a0, kin $al, iin $s0, j in $s|

The Procedure Body

move $s2, $a0 save $a0 into $s2

move $s0, $zero i=0

#
move $s3, $al # save $al into $s3
4 1
forltst: slt $t0, $s0, $s3 # $t0 = 0 if $s0 > $s3 (i > n)

beq $t0, $zero, exitl # go to exitl if $sO0 > $s3 (i > n)
addi $s1, $s0, -1 #j =1 -1
for2tst: slti $t0, $s1, O # $t0 =1 if $s1 < 0 (3 < 0) -
bne $t0, $zero, exit2 # go to exit2 if $s1 < 0 (j < 0)
s11T $t1, $s1, 2 #%tl =3 * 4
add $t2, $s2, $t1 # $t2 =v + (* 4)
Tw $t3, 0(%t2) # $t3 = v[j]
Tw $t4, 4($t2) # $t4 = v[j + 1]
st $t0, $t4, $t3 # $t0 = 0 if $t4 > $t3
beq $t0, $zero, exit2 # go to exit2 if $t4 > $t3
move $a0, $s2 # 1st param of swap is v (old $a0
move $al, $sl # 2nd param of swap is j -
jal swap # call swap procedure
addi $s1, $s1, -1 # 3 =1
j for2tst # jump to test of inner Tloop
exit2: addi $sO0, $s0O0, 1 #1 +=1
j forltst # jump to test of outer Tloop _

The Full Procedure

sort: addi $sp, $sp, -20 # make room on stack for 5 registers
sw $ra, 16($sp) # save $ra on stack
sw $s3,12($sp) # save $s3 on stack
sw $s2, 8($sp) # save $s2 on stack
sw $s1, 4($sp) # save $sl1 on stack
sw $s0, 0($sp) # save $s0 on stack
- # procedure body

ex1tl: Iw $s0, 0(S$sp)
Tw $s1, 4($sp)

Tw $s2, 8($sp)

Tw $s3,12($sp)

Tw $ra,16($sp)

addi $sp, $sp, 20

restore $s0 from stack
restore $sl1 from stack
restore $s2 from stack
restore $s3 from stack
restore $ra from stack
restore stack pointer

jr $ra

H|H H HHHEHK

return to calling routine

Effect of Compiler Optimization

Compiled with gcc for Pentium 4 under Linux

@ Relative Performance

2.5

1.5

ol5

180000
160000
140000
120000
100000
80000
60000
40000
20000
0

none

HE Clock Cycles

I..E

none

140000
120000
100000
80000
60000
40000
20000
0

@ Instruction count

=

none

@ CPI

15

0.5

none

Effect of Language and Algorithm

3 E Bubblesort Relative Performance
2.5
2
1.5
1
0.5 .
o : : : : | — .
C/none C/01 C/02 C/03 Java/int Java/JIT
2.5 @ Quicksort Relative Performance
2
1.5
1
0.5 l
o , , , , _
C/none C/01 C/02 C/03 Java/int Java/JIT
3000 @ Quicksort vs. Bubblesort Speedup
2500

2000

1500
1000
500 .
0 , , , , .

C/none Cc/01 C/02 C/03 Java/int Java/JIT

L essons Learnt

" Instruction count and CPI are not good
performance indicators in isolation

= Compiler optimizations are sensitive to the
algorithm

= Java/JIT compiled code is significantly faster than
JVM interpreted

* Comparable to optimized C in some cases
* Nothing can fix a dumb algorithm!

Arrays vs. Pointers

= Array indexing involves
* Multiplying index by element size
* Adding to array base address
* Pointers correspond directly to memory
addresses
* Can avoid indexing complexity

Example: Clearing and Array

clearl(int array[], int size) { clear2(int *array, int size) {
int 1; int *p;
for (i =0; 1 < size; i += 1) for (p = &array[0]; p < &array[size];
array[i] = 0; p=p+ 1)
} *p = 0;
move $t0,$zero # i =0 move $tO,
Toopl: s11 $t1,%$t0,2 # %tl =1 * 4 s11 $t1, 2 # %$tl = * 4

add $t2,%a0,$tl

sw $zero, 0($t2)
addi $t0,$t0,1
s1t $t3,%$t0, %al

$t2 =

&arrayl[i]
array[i] = 0
#1=1+1

$t3 =

(1 < size)

bne $t3,%$zero,loopl # if (.)

goto loopl

add $t2,%a0,%tl # $t2 =

sw $zero,0(
addi $t0, $t0,
s1t $t3,9$t0,

&array[]

) # =0

#
$t3 =
#(

bne $t3,%$zero,loop2 # if (.)

goto loop?2

Comparison of Array vs. Ptr

= Multiply “strength reduced” to shift

" Array version requires shift to be inside loop
* Part of index calculation for incremented i
* c.f. incrementing pointer
= Compiler can achieve same effect as manual use
of pointers
* Induction variable elimination
* Better to make program clearer and safer

ARM & MIPS Similarities

= ARM: the most popular embedded core
= Similar basic set of instructions to MIPS

>
Py,
D
5]
o
(-
=
>
A
<
=1
7l

ARM MIPS

Date announced 1985 1985
Instruction size 32 bits 32 bits
Address space 32-bit flat 32-bit flat
Data alignment Aligned Aligned
Data addressing modes 9 3
Registers 15 X 32-bit 31 X 32-bit
Input/output Memory Memory

mapped mapped

Compare and Branch in ARM

= Uses condition codes for result of an
arithmetic/logical instruction

* Negative, zero, carry, overflow

* Compare instructions to set condition codes without
keeping the result

= Each instruction can be conditional
* Top 4 bits of instruction word: condition value
* Can avoid branches over single instructions

Instruction Encoding

Register-register

Data transfer

Branch

Jump/Call

ARM

MIPS

ARM

MIPS

ARM

MIPS

ARM

MIPS

H 28 27 20 19 16 15 12 11 4 3 1]
opx’ op® Rst* | Rd' | opx® | Rsz |
at 26 25 21 20 16 15 t1 10 6 5 a
op° Rs1® Rs2® Rd® Const® Opx®
K] 28 27 2019 16 15 12 11 a
opx* op® Rs1* | Rd* | Const™
K] 26 25 21 20 16 15 14
op® Rsi® Rd® Const'®
H 28 27 24 23 a
Opx* op* Const™
H 26 25 21 20 16 15 a
op® Rst® Opx‘/As2 Const'®
at 28 27 24 23 a
Opx* op* Const™
a3t 26 25 Q
op° Const*®

O Opcode [Register [Constant

The Intel x86 ISA

= Evolution with backward compatibility

* 8080 (1974): 8-bit microprocessor
= Accumulator, plus 3 index-register pairs
8086 (1978): 16-bit extension to 8080
= Complex instruction set (CISC)
8087 (1980): floating-point coprocessor
= Adds FP instructions and register stack
80286 (1982): 24-bit addresses, MMU
= Segmented memory mapping and protection
80386 (1985): 32-bit extension (now IA-32)
= Additional addressing modes and operations
= Paged memory mapping as well as segments

&,
I
—
N
A
)
O
.
o
-
R
>
o
»
S
n
—

The Intel x86 ISA

®» Further evolution...

* 486 (1989): pipelined, on-chip caches and FPU
= Compatible competitors: AMD, Cyrix, ...
Pentium (1993): superscalar, 64-bit datapath

= Later versions added MMX (Multi-Media eXtension)
instructions

= The infamous FDIV bug

Pentium Pro (1995), Pentium Il (1997)

= New microarchitecture (see Colwell, The Pentium
Chronicles)

Pentium Il (1999)

= Added SSE (Streaming SIMD Extensions) and
associated registers

Pentium 4 (2001)

= New microarchitecture
» Added SSEZ2 instructions

The Intel x86 ISA

= And further...

EM64T — Extended Memory 64 Technology (2004)
= AMD64 adopted by Intel (with refinements)
= Added SSE3 instructions

Intel Core (2006)
= Added SSE4 instructions, virtual machine support

Advanced Vector Extension (announced 2008)
= Longer SSE registers, more instructions

" |f Intel didn’t extend with compatibility, its
competitors would!

* Technical elegance # market success

Basic x86 Registers

Name Use
It o
EAX GPR O
ECX GPR 1
EDX GPR 2
EBX GPR 3
ESP GPR 4
EBP GPR 5
ESI GPR6
EDI GPR7
Code segment pointer

Stack segment pointer (top of stack)
Data segment pointer 0
Data segment painter 1
Data segment painter 2

Data segment painter 3

EIP Instruction pointer (PC)

EFLAGS Condition codes

Ba5|c x86 Addressing Modes

Two operands per instruction
Source/dest operand Second source operand
Register Register
Register Immediate
Register Memory
Memory Register
Memory Immediate

Memory addressing modes
Address in register
Address = R, . *+ displacement
Address = R, + 25¢8® X R, 4., (scale =0, 1, 2, or 3)
Address = R, + 258 X R, .. + displacement

x86 Instruction Encoding

s 50 - amconen " Variable length encoding
e || isecemert * Postfix bytes specify
a CALL addressing mode

o o * Prefix bytes modify
oMOV EBX,[EDI + 48 operation

v Jalu] | oepacaman = Operand length,
e repetition, locking, ...
st oo

e. ADD EAX, #6765
4 3 1 az

ADD |Reg|w Immediate

f.TEST EDX, #42
7 1 8 32

TEST |w| Postbyte Immediate

Implementing 1A-32

* Complex instruction set makes implementation
difficult

* Hardware translates instructions to simpler
microoperations

= Simple instructions: 1-1
= Complex instructions: 1-many
* Microengine similar to RISC
* Market share makes this economically viable

* Comparable performance to RISC
* Compilers avoid complex instructions

ARM v8 Instructions

" In moving to 64-bit, ARM did a complete overhaul
= ARM v8 resembles MIPS

* Changes from v7:
= No conditional execution field
= Immediate field is 12-bit constant
= Dropped load/store multiple
= PCis no longer a GPR
GPR set expanded to 32
Addressing modes work for all word sizes
Divide instruction
Branch if equal/branch if not equal instructions

%
Py
D
D
2,
-
=R
>
A
<
<
o
>
i
O

Fallacies

* Powerful instruction = higher performance
* Fewer instructions required
* But complex instructions are hard to implement
= May slow down all instructions, including simple ones

* Compilers are good at making fast code from simple
instructions

= Use assembly code for high performance

* But modern compilers are better at dealing with
modern processors

* More lines of code = more errors and less
productivity

| PUE S3l0E||[ed G CS

Fallacies

* Backward compatibility = instruction set doesn’t
change
* But they do accrete more instructions

1000

900
800 ’//'_
700

600
500
o / |x86 instruction set

300 ‘—*/}/
200

1[){]_?*/
D 1T 1T 17T 1T 17T 17T 17T 17 T 17 T 17T T T 1T T T T T T T T T T T T T T T T 1
AL o o ol o0 oP o gl o o o P b P PPNV
AN TN IR I R TN A N A R Y (S I W G N

Year

Number of Instructions

Pitfalls

= Sequential words are not at sequential addresses
* Increment by 4, not by |!
= Keeping a pointer to an automatic variable after
procedure returns
* e.g., passing pointer back via an argument
* Pointer becomes invalid when stack popped

Concluding Remarks

" Design principles
Simplicity favors regularity

&,
2
N
O
O
O
>
Q
-
=
>

@

Smaller is faster

Make the common case fast
Good design demands good compromises

* Layers of software/hardware
* Compiler, assembler, hardware

= MIPS: typical of RISC ISAs
* c.f. x86

Concluding Remarks

= Measure MIPS instruction executions in benchmark
programs

* Consider making the common case fast

* Consider compromises

Instruction class

MIPS examples

SPEC2006 Int

SPEC2006 FP

Arithmetic add, sub, addi 16% 48%

Data transfer Tw, sw, 1b, T1bu, 35% 36%
Th, Thu, sb, Tui

Logical and, or, nor, andi, 12% 4%
ori, sll, srl

Cond. Branch beq, bne, slt, 34% 8%

slti, sltiu
Jump j, jr, jal 2% 0%

