
Hanyang University – Computer Architecture [2019]

Instructions: Language of the
Computer

Computer Architecture

2019 1학기

한양대학교공과대학컴퓨터소프트웨어학부
홍석준

C Sort Example
 Illustrates use of assembly instructions for a C

bubble sort function
 Swap procedure (leaf)

void swap(int v[], int k)
{

int temp;
temp = v[k];
v[k] = v[k+1];
v[k+1] = temp;

}

• v in $a0, k in $a1, temp in $t0

§2.13 A C
 Sort Exam

ple to Put It All Together

The Procedure Swap
swap: sll $t1, $a1, 2 # $t1 = k * 4

add $t1, $a0, $t1 # $t1 = v+(k*4)

(address of v[k])

lw $t0, 0($t1) # $t0 (temp) = v[k]

lw $t2, 4($t1) # $t2 = v[k+1]

sw $t2, 0($t1) # v[k] = $t2 (v[k+1])

sw $t0, 4($t1) # v[k+1] = $t0 (temp)

jr $ra # return to calling routine

The Sort Procedure in C

 Non-leaf (calls swap)
void sort (int v[], int n)
{

int i, j;
for (i = 0; i < n; i += 1) {

for (j = i – 1;
j >= 0 && v[j] > v[j + 1];
j -= 1) {

swap(v,j);
}

}
}

• v in $a0, k in $a1, i in $s0, j in $s1

The Procedure Body
move $s2, $a0 # save $a0 into $s2
move $s3, $a1 # save $a1 into $s3
move $s0, $zero # i = 0

for1tst: slt $t0, $s0, $s3 # $t0 = 0 if $s0 ≥ $s3 (i ≥ n)

beq $t0, $zero, exit1 # go to exit1 if $s0 ≥ $s3 (i ≥ n)
addi $s1, $s0, –1 # j = i – 1

for2tst: slti $t0, $s1, 0 # $t0 = 1 if $s1 < 0 (j < 0)
bne $t0, $zero, exit2 # go to exit2 if $s1 < 0 (j < 0)
sll $t1, $s1, 2 # $t1 = j * 4
add $t2, $s2, $t1 # $t2 = v + (j * 4)
lw $t3, 0($t2) # $t3 = v[j]
lw $t4, 4($t2) # $t4 = v[j + 1]
slt $t0, $t4, $t3 # $t0 = 0 if $t4 ≥ $t3
beq $t0, $zero, exit2 # go to exit2 if $t4 ≥ $t3
move $a0, $s2 # 1st param of swap is v (old $a0)
move $a1, $s1 # 2nd param of swap is j
jal swap # call swap procedure
addi $s1, $s1, –1 # j –= 1
j for2tst # jump to test of inner loop

exit2: addi $s0, $s0, 1 # i += 1
j for1tst # jump to test of outer loop

Pass
params
& call

Move
params

Inner loop

Outer loop

Inner loop

Outer loop

sort: addi $sp,$sp, –20 # make room on stack for 5 registers
sw $ra, 16($sp) # save $ra on stack
sw $s3,12($sp) # save $s3 on stack
sw $s2, 8($sp) # save $s2 on stack
sw $s1, 4($sp) # save $s1 on stack
sw $s0, 0($sp) # save $s0 on stack
… # procedure body
…
exit1: lw $s0, 0($sp) # restore $s0 from stack
lw $s1, 4($sp) # restore $s1 from stack
lw $s2, 8($sp) # restore $s2 from stack
lw $s3,12($sp) # restore $s3 from stack
lw $ra,16($sp) # restore $ra from stack
addi $sp,$sp, 20 # restore stack pointer
jr $ra # return to calling routine

The Full Procedure

Effect of Compiler Optimization

0

0.5

1

1.5

2

2.5

3

none O1 O2 O3

Relative Performance

0
20000
40000
60000
80000

100000
120000
140000
160000
180000

none O1 O2 O3

Clock Cycles

0
20000
40000
60000
80000

100000
120000
140000

none O1 O2 O3

Instruction count

0

0.5

1

1.5

2

none O1 O2 O3

CPI

Compiled with gcc for Pentium 4 under Linux

Effect of Language and Algorithm

0

0.5

1

1.5

2

2.5

3

C/none C/O1 C/O2 C/O3 Java/int Java/JIT

Bubblesort Relative Performance

0

0.5

1

1.5

2

2.5

C/none C/O1 C/O2 C/O3 Java/int Java/JIT

Quicksort Relative Performance

0

500

1000

1500

2000

2500

3000

C/none C/O1 C/O2 C/O3 Java/int Java/JIT

Quicksort vs. Bubblesort Speedup

Lessons Learnt

 Instruction count and CPI are not good
performance indicators in isolation

 Compiler optimizations are sensitive to the
algorithm

 Java/JIT compiled code is significantly faster than
JVM interpreted
• Comparable to optimized C in some cases

 Nothing can fix a dumb algorithm!

Arrays vs. Pointers
 Array indexing involves

• Multiplying index by element size
• Adding to array base address

 Pointers correspond directly to memory
addresses
• Can avoid indexing complexity

§2.14 Arrays versus Pointers

Example: Clearing and Array
clear1(int array[], int size) {
int i;
for (i = 0; i < size; i += 1)
array[i] = 0;

}

clear2(int *array, int size) {
int *p;
for (p = &array[0]; p < &array[size];

p = p + 1)
*p = 0;

}

move $t0,$zero # i = 0

loop1: sll $t1,$t0,2 # $t1 = i * 4

add $t2,$a0,$t1 # $t2 =

&array[i]

sw $zero, 0($t2) # array[i] = 0

addi $t0,$t0,1 # i = i + 1

slt $t3,$t0,$a1 # $t3 =

(i < size)

bne $t3,$zero,loop1 # if (…)
goto loop1

move $t0,$a0 # p = & array[0]

sll $t1,$a1,2 # $t1 = size * 4

add $t2,$a0,$t1 # $t2 =

&array[size]

loop2: sw $zero,0($t0) # Memory[p] = 0

addi $t0,$t0,4 # p = p + 4

slt $t3,$t0,$t2 # $t3 =

#(p<&array[size])

bne $t3,$zero,loop2 # if (…)

goto loop2

Comparison of Array vs. Ptr

 Multiply “strength reduced” to shift
 Array version requires shift to be inside loop

• Part of index calculation for incremented i
• c.f. incrementing pointer

 Compiler can achieve same effect as manual use
of pointers
• Induction variable elimination
• Better to make program clearer and safer

ARM & MIPS Similarities
 ARM: the most popular embedded core
 Similar basic set of instructions to MIPS

§2.16 R
eal Stuff: AR

M
 Instructions

ARM MIPS
Date announced 1985 1985
Instruction size 32 bits 32 bits
Address space 32-bit flat 32-bit flat
Data alignment Aligned Aligned
Data addressing modes 9 3
Registers 15 × 32-bit 31 × 32-bit
Input/output Memory

mapped
Memory
mapped

Compare and Branch in ARM

 Uses condition codes for result of an
arithmetic/logical instruction
• Negative, zero, carry, overflow
• Compare instructions to set condition codes without

keeping the result
 Each instruction can be conditional

• Top 4 bits of instruction word: condition value
• Can avoid branches over single instructions

Instruction Encoding

The Intel x86 ISA

 Evolution with backward compatibility
• 8080 (1974): 8-bit microprocessor

 Accumulator, plus 3 index-register pairs
• 8086 (1978): 16-bit extension to 8080

 Complex instruction set (CISC)
• 8087 (1980): floating-point coprocessor

 Adds FP instructions and register stack
• 80286 (1982): 24-bit addresses, MMU

 Segmented memory mapping and protection
• 80386 (1985): 32-bit extension (now IA-32)

 Additional addressing modes and operations
 Paged memory mapping as well as segments

§2.17 R
eal Stuff: x86 Instructions

The Intel x86 ISA

 Further evolution…
• i486 (1989): pipelined, on-chip caches and FPU

 Compatible competitors: AMD, Cyrix, …
• Pentium (1993): superscalar, 64-bit datapath

 Later versions added MMX (Multi-Media eXtension)
instructions

 The infamous FDIV bug
• Pentium Pro (1995), Pentium II (1997)

 New microarchitecture (see Colwell, The Pentium
Chronicles)

• Pentium III (1999)
 Added SSE (Streaming SIMD Extensions) and

associated registers
• Pentium 4 (2001)

 New microarchitecture
 Added SSE2 instructions

The Intel x86 ISA

 And further…
• AMD64 (2003): extended architecture to 64 bits
• EM64T – Extended Memory 64 Technology (2004)

 AMD64 adopted by Intel (with refinements)
 Added SSE3 instructions

• Intel Core (2006)
 Added SSE4 instructions, virtual machine support

• AMD64 (announced 2007): SSE5 instructions
 Intel declined to follow, instead…

• Advanced Vector Extension (announced 2008)
 Longer SSE registers, more instructions

 If Intel didn’t extend with compatibility, its
competitors would!
• Technical elegance ≠ market success

Basic x86 Registers

Basic x86 Addressing Modes
 Two operands per instruction

Source/dest operand Second source operand
Register Register
Register Immediate
Register Memory
Memory Register
Memory Immediate

 Memory addressing modes
 Address in register
 Address = Rbase + displacement
 Address = Rbase + 2scale × Rindex (scale = 0, 1, 2, or 3)
 Address = Rbase + 2scale × Rindex + displacement

x86 Instruction Encoding
 Variable length encoding

• Postfix bytes specify
addressing mode

• Prefix bytes modify
operation
 Operand length,

repetition, locking, …

Implementing IA-32

 Complex instruction set makes implementation
difficult
• Hardware translates instructions to simpler

microoperations
 Simple instructions: 1–1
 Complex instructions: 1–many

• Microengine similar to RISC
• Market share makes this economically viable

 Comparable performance to RISC
• Compilers avoid complex instructions

ARM v8 Instructions

 In moving to 64-bit, ARM did a complete overhaul
 ARM v8 resembles MIPS

• Changes from v7:
 No conditional execution field
 Immediate field is 12-bit constant
 Dropped load/store multiple
 PC is no longer a GPR
 GPR set expanded to 32
 Addressing modes work for all word sizes
 Divide instruction
 Branch if equal/branch if not equal instructions

§2.18 R
eal Stuff: AR

M
 v8 (64-bit) Instructions

Fallacies

 Powerful instruction  higher performance
• Fewer instructions required
• But complex instructions are hard to implement

 May slow down all instructions, including simple ones
• Compilers are good at making fast code from simple

instructions
 Use assembly code for high performance

• But modern compilers are better at dealing with
modern processors

• More lines of code  more errors and less
productivity

§2.19 Fallacies and Pitfalls

Fallacies
 Backward compatibility  instruction set doesn’t

change
• But they do accrete more instructions

x86 instruction set

Pitfalls

 Sequential words are not at sequential addresses
• Increment by 4, not by 1!

 Keeping a pointer to an automatic variable after
procedure returns
• e.g., passing pointer back via an argument
• Pointer becomes invalid when stack popped

Concluding Remarks

 Design principles
1. Simplicity favors regularity
2. Smaller is faster
3. Make the common case fast
4. Good design demands good compromises

 Layers of software/hardware
• Compiler, assembler, hardware

 MIPS: typical of RISC ISAs
• c.f. x86

§2.20 C
oncluding R

em
arks

Concluding Remarks
 Measure MIPS instruction executions in benchmark

programs
• Consider making the common case fast
• Consider compromises

Instruction class MIPS examples SPEC2006 Int SPEC2006 FP
Arithmetic add, sub, addi 16% 48%

Data transfer lw, sw, lb, lbu,
lh, lhu, sb, lui

35% 36%

Logical and, or, nor, andi,
ori, sll, srl

12% 4%

Cond. Branch beq, bne, slt,
slti, sltiu

34% 8%

Jump j, jr, jal 2% 0%

