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Introduction

* CPU performance factors

* |Instruction count
= Determined by ISA and compiler

e CPl and Cycle time
= Determined by CPU hardware

* We will examine two MIPS implementations
* A simplified version
* A more realistic pipelined version

= Simple subset, shows most aspects
e Memory reference: 1w, sSw
 Arithmetic/logical: add, sub, and, or, slt
e Control transfer: beq, }




Instruction Execution

= PC — instruction memory, fetch instruction
= Register numbers — register file, read registers

* Depending on instruction class

e Use ALU to calculate
= Arithmetic result
= Memory address for load/store
= Branch target address
e Access data memory for load/store

e PC <« target address or PC + 4



CPU Overview
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Multiplexers
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Control
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Logic Design Basics

" Information encoded in binary

e Low voltage = 0, High voltage = |

* One wire per bit

e Multi-bit data encoded on multi-wire buses
= Combinational element

e Operate on data

e Output is a function of input
= State (sequential) elements

e Store information
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Combinational Elements

= AND-gate Adder A
e Y=A&B >+ Y
Y=A+B B —
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Sequential Elements

= Register: stores data in a circuit

e Uses a clock signal to determine when to update the
stored value

e Edge-triggered: update when Clk changes from O to |

Clk —f> o >< ><




Sequential Elements

= Register with write control
e Only updates on clock edge when write control input is |
e Used when stored value is required later
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Clocking Methodology

= Combinational logic transforms data during clock
cycles
e Between clock edges
* Input from state elements, output to state element
* Longest delay determines clock period
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Building a Datapath

= Datapath

e Elements that process data and addresses
in the CPU

= Registers, ALUs, mux’'s, memories, ...

* We will build a MIPS datapath incrementally

e Refining the overview design
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Instruction Fetch
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R-Format Instructions

= Read two register operands

* Perform arithmetic/logical operation
" Write register result
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Load/Store Instructions

* Read register operands
= Calculate address using |6-bit offset
e Use ALU, but sign-extend offset

* Load: Read memory and update register
= Store: Write register value to memory
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Branch Instructions

* Read register operands

= Compare operands
e Use ALU, subtract and check Zero output

" Calculate target address
e Sign-extend displacement

 Shift left 2 places (word displacement)

e Add to PC + 4
= Already calculated by instruction fetch



Branch Instructions
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Composing the Elements

" First-cut data path does an instruction in one
clock cycle
e Each datapath element can only do one function at a
time
* Hence, we need separate instruction and data
memories

= Use multiplexers where alternate data sources
are used for different instructions



R-Type/Load/Store Datapath
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Full Datapath
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