{aa) DI
o HAHYANG UHIVEREITY

The Processor

Computer Architecture

2019 &7

Hanyang University — Computer Architecture [2019]

Introduction

* CPU performance factors

* |Instruction count
= Determined by ISA and compiler

e CPl and Cycle time
= Determined by CPU hardware

* We will examine two MIPS implementations
* A simplified version
* A more realistic pipelined version

= Simple subset, shows most aspects
e Memory reference: 1w, sSw
 Arithmetic/logical: add, sub, and, or, slt
e Control transfer: beq, }

Instruction Execution

= PC — instruction memory, fetch instruction
= Register numbers — register file, read registers

* Depending on instruction class

e Use ALU to calculate
= Arithmetic result
= Memory address for load/store
= Branch target address
e Access data memory for load/store

e PC <« target address or PC + 4

CPU Overview

Add

A

A

Add

Address Instruction

Instruction
memory

|

—

Data

Register #
Registers

Register #

Register #

4

Address

Data
memory

Data

Multiplexers

[~
O

A

} 3

Can’t just join
wires together
Use multiplexers

Address Inst

Instruction
memory

|—> Data

¢>| Register #

Register #
ruction -v{ Registers
Register #

Address

Data
memory

Data

Control

(xcg

o—
4 —»
Data
Register #
@ Address Instruction Registers
Register #
Instruction
memory Register # Reg\rite

Branch
]
NG
M
u <
X -
N
ALU operation
> I
MemWrite
ALU » Address
M
y Zero Data
X memory
» Data
MemRead

\

!
Control }

/

Logic Design Basics

" Information encoded in binary

e Low voltage = 0, High voltage = |

* One wire per bit

e Multi-bit data encoded on multi-wire buses
= Combinational element

e Operate on data

e Output is a function of input
= State (sequential) elements

e Store information

w
B
N
—
@)

Q
o
O
(D
23

Q
S
Q)
o
=
<
q))
-
=
o
-
O

Combinational Elements

= AND-gate Adder A
e Y=A&B >+ Y
Y=A+B B —

5 [)"
| Arithmetic/Logic Unit
Multiplexer Y = E(A, B)
Y=S?I11:10

A —

|1
B —>

S F

Sequential Elements

= Register: stores data in a circuit

e Uses a clock signal to determine when to update the
stored value

e Edge-triggered: update when Clk changes from O to |

Clk —f> o >< ><

Sequential Elements

= Register with write control
e Only updates on clock edge when write control input is |
e Used when stored value is required later

D — —>Q

Write —
Clk —>

Clocking Methodology

= Combinational logic transforms data during clock
cycles
e Between clock edges
* Input from state elements, output to state element
* Longest delay determines clock period

State State

element —(Combinational logic element State o _
1 2 > Combinational logic
element

Clock cycle —

Building a Datapath

= Datapath

e Elements that process data and addresses
in the CPU

= Registers, ALUs, mux’'s, memories, ...

* We will build a MIPS datapath incrementally

e Refining the overview design

w
.
w
o
=
-
5
)
®
O
2
3
©
)
—
=3

Instruction Fetch

4
| pC —6— Read
address
Instruction b—>
Instruction
memory

R-Format Instructions

= Read two register operands

* Perform arithmetic/logical operation
" Write register result

Register <
numbers

A
Data {

a. Reqisters

> Data

2 | Read
register 1 Read
5 |Read data 1
: register 2
5 | writ Registers
. rerli:ter
g Read
Write data 2
Data
RegWrite

ALU operation

ALU ALy
result

b. ALU

Load/Store Instructions

* Read register operands
= Calculate address using |6-bit offset
e Use ALU, but sign-extend offset

* Load: Read memory and update register
= Store: Write register value to memory

‘ MemWrite

—| Address R dea?g

Sign-
extend

Data

Write ~ memory

data

MemRead

a. Data memory unit b. Sign extension unit

Branch Instructions

* Read register operands

= Compare operands
e Use ALU, subtract and check Zero output

" Calculate target address
e Sign-extend displacement

 Shift left 2 places (word displacement)

e Add to PC + 4
= Already calculated by instruction fetch

Branch Instructions

PC +4 from instruction datapath —

Branch
\ > Add Sum target

Regd ALU operation
Instruction register 1 Read .

Read data 1 i

register 2 To branch

Write Registers >ALU Zero control logic

register Read .

Write data 2]

data

RegWrite
16 .| Sign- 32
~ | extend

Composing the Elements

" First-cut data path does an instruction in one
clock cycle
e Each datapath element can only do one function at a
time
* Hence, we need separate instruction and data
memories

= Use multiplexers where alternate data sources
are used for different instructions

R-Type/Load/Store Datapath

MemWrite

Address

Write
data

Read

Y

data

\]

Oxec=—

Data
memory

N F{egd ALU operation
register 1 Read
Read data 1 o
Instruction | register 2 ALUSrc
_ Registers g4 ALU ALy
o—| Write data 2 0 result
register '\L’Il
»| Write f
data
RegWrite g
16 [sign. | 22

>

extend

MemRead

MemtoReg

Full Datapath

PCSrc
M
Add & . u
X
ALU
4= Add oq it
Read Read ALUSIc 4. ALU operation
register 1 Read | .
address d ea1 > MemWrite
Regd a8 MemtoReg
, register 2
Instruction Write Registers Read ALU 51U Address Read
Instruction register data 2 result data
memory _
| data
_| write Data
RegWrite " |data memory
MemRead
16: Sign- 32

extend

	The Processor
	Introduction
	Instruction Execution
	CPU Overview
	Multiplexers
	Control
	Logic Design Basics
	Combinational Elements
	Sequential Elements
	Sequential Elements
	Clocking Methodology
	Building a Datapath
	Instruction Fetch
	R-Format Instructions
	Load/Store Instructions
	Branch Instructions
	Branch Instructions
	Composing the Elements
	R-Type/Load/Store Datapath
	Full Datapath

