{aa) DI
o HAHYANG UHIVEREITY

The Processor

Computer Architecture

2019 1&}7|

Hanyang University — Computer Architecture [2019]

ALU Control

= ALU used for
* Load/Store: F = add
* Branch: F = subtract
* R-type: F depends on funct field

w
e
™
>
N
=)

=2
%)
=)

j=2
D)
3
Q)
=
2
=
S
0]
?)
=
)
3
D

ALU control Function
0000 AND
0001 OR
0010 add
0110 subtract
0111 set-on-less-than
1100 NOR

ALU Control

= Assume 2-bit ALUOp derived from opcode

e Combinational logic derives ALU control

opcode ALUOp | Operation funct ALU function ALU control
lw 00 load word XXXXXX | add 0010
SwW 00 store word XXXXXX | add 0010
beq 01 branch equal XXXXXX | subtract 0110
R-type 10 add 100000 | add 0010
subtract 100010 | subtract 0110
AND 100100 | AND 0000
OR 100101 | OR 0001
set-on-less-than 101010 | set-on-less-than 0111

The Main Control Unit

* Control signals derived from instruction

R-type |0 rs rt rd shamt | funct
31:26 25:21 20:16 ‘\15:11 10:6 5:0
Load/ (35 5r43 |rs rt adjdress
Store
31:26 25:21 20:16 \ \ 150 ¢
Branch |4 rs rt édc&ress
31:26 25:21 20:16 15:0

Datapath With Control

Add

Read
address

Instruction
[31-0]

Instruction
memory

b |

Instruction [31-26]

Instruction [25—-21]
[3

» Control

RegDst
Branch

\

ALU

Add result

\ MemRead

- xc= ©

MemtoReg

ALUOp

MemWrite

| ALUSrc

RegWrite

Instruction [20-16]

. | Read

Instruction [15—11]
[2 >

“xe=°

Instruction [15-0]

Read
register 1 pang

data 1
register 2

Write Read

(0

register data 2

Write
data Registers

16 /;;;:\ 32

—“xc=

Zero
ALU pLU
result

Instruction [5-0]

Address

Write

" | data

Read
data

Data
memory

Oxc=—

R-Type Instruction

Add

Read
address

Instruction
[31-0]

Instruction
memory

it L.

Instruction [31-26]

Instruction [25—-21]
[3

» Control

RegDst
Branch

MemRead

MemtoReg

ALUOp

MemWrite

| ALUSrc

RegWrite

. | Read

Instruction [20-16]

" | register 1 gooq

_ | Read

“xe=°

Instruction [15—11]
2 >

Instruction [15-0]

o Write

data 1
register 2

Write Read

»(0

register data 2

data Registers

—“xc=

Zero
ALU oLy
result

Read

Address data

Write Data

Instruction [5-0]

> data memory

Oxc=""

Load Instruction

Add

Read
address

Instruction
[31-0]

Instruction
memory

A

I

Instruction [31-26]

» Control

Instruction [25—-21]
[3

RegDst
Branch

\ MemRead

- xc=2 ©

MemtoReg

ALUOp

MemWrite

/ ALUSrc

RegWrite

Instruction [20-16]

L.

Instruction [15—11]

“xe=0

Instruction [15-0]

. | Read
" | register 1 gooq
| Read data 1
register 2
Write Read
register Jata?
| Write]
data Registers

Y

Zero
ALU ALU
result

Instruction [5-0]

Address

Write
data

Read
data

Data
memory

Oxg=—

Branch-on-Equal Instruction

PC

Add

Read
address

Instruction
[31-0]

Instruction
memory

I

Instruction [31-26]

» Control

Instruction [25-21]
[3

RegDst
Branch

\

ALU

Add result

\ MemRead

- xc= ©

MemtoReg

ALUOp

MemWrite

| ALUSrc

RegWrite

. | Read

Instruction [20-16]

_ | Read

" | register 1 gooq

data 1

L.

Instruction [15—11]

0
M
u
X

1

Instruction [15-0]

register 2

Write
register

Read
data 2

. Write

dala Registers

»(0

eSS

Zero
ALU ;|

Y

result

Instruction [5-0]

Address

Write
data

Read
data

Data
memory

 m—

Oxg=—

Implementing Jumps

Jump 2 address

31:26 25:0

" Jump uses word address

* Update PC with concatenation of
* Top 4 bits of old PC
* 26-bit jump address
* 00
* Need an extra control signal decoded from opcode

Datapath With Jumps Added

Instruction [25-0]

Add

N

Shift).

Jump address [31-0]

PC + 4 [31-28]

N N
26 left 2 08
.

Instruction [31-26]
» Control

Read
address

Instruction
[31-0]

Instruction
memory

Instruction [25-21]
»

RegDst
Jump

\ Branch

Add

\ MemRead

MemtoReg

ALUOp

MemWrite

| ALUSrc

RegWrite

Instruction [20—-16]

_ | Read

Ih

L.

Instruction [15—11]
s -

=20

Instruction [15-0]

Y

" | register 2

Read
register 1 Raag

data 1

Read

Write

register data?2

Write
data Registers

(0

“xc=

i

Zero
ALU ALU

result

Y

Instruction [5-0]

Address

Write
data

Read
data

Data
memory

—

Oxe=—

Performance Issues

Longest delay determines clock period

* Critical path: load instruction

* Instruction memory — register file - ALU — data
memory — register file

Not feasible to vary period for different
instructions

Violates design principle
* Making the common case fast
We will improve performance by pipelining

Pipelining Analogy
* Pipelined laundry: overlapping execution
* Parallelism improves performance

) 6 PM 7 8 9 10 11 12 1 2 AM
Time

Task

™ B35 Four loads:
g B0=_ 9
c Bo=l Speedup
D 80 =8/3.5=2.3

ﬁ::h_ T Non-stop:

e Speedup
B =2n/0.5n + 1.5~ 4

%l = number of stages

B0

B
C
D

wn
-
o1
>
>
@)
<
®
>
=
9]
=
o
—
9

o
o
=)
>

(@]

MIPS Pipeline

= Five stages, one step per stage

IF: Instruction fetch from memory

ID: Instruction decode & register read

EX: Execute operation or calculate address
MEM: Access memory operand

WB: Write result back to register

i A WD —

Pipeline Performance

" Assume time for stages is
* |00ps for register read or write
* 200ps for other stages

* Compare pipelined datapath with single-cycle

datapath
Instr Instr fetch | Register | ALU op Memory | Register | Total time
read access write
lw 200ps 100 ps 200ps 200ps 100 ps
sw 200ps 100 ps 200ps 200ps 700ps
R-format | 200ps 100 ps 200ps 100 ps 600ps
beq 200ps 100 ps 200ps 500ps

Pipeline Performance

Program
execution Time 200 400 600 800 1000 1200 1400 1600 1800
order ' ' | | I | | | |
(in instructions)
Iw $1, 100($0) | "SIt Reg | ALU a2 | Reg
Instructi Dat

lw $2, 200($0) 800 ps nsfgtj:hlon Reg| ALU acc?eZS Reg

Instruction
lw $3, 300($0) 800 ps fetch
Program
execution .. 200 400 600 800 1000 1200 1400

Tme T T T T T T T

order
(in instructions)
w $1,100(60)| | Reg| A | 23 |reg
w $2,200($0) 200 ps | "foen| |Res| AU | cess |Res
Iw $3, 300(30) 200 ps | | [Rea| AU | DR IReg

200 ps 200 ps 200 ps 200 ps 200 ps

Pipeline Speedup

= [f all stages are balanced
* i.e, all take the same time

* Time between instructions,;,jined

= Time between instructions
Number of stages

nonpipelined

* |f not balanced, speedup is less

" Speedup due to increased throughput
* Latency (time for each instruction) does not decrease

Pipelining and ISA Design

= MIPS ISA designed for pipelining

* All instructions are 32-bits
= Easier to fetch and decode in one cycle
= c.f. x86: 1- to 17-byte instructions
* Few and regular instruction formats
= Can decode and read registers in one step

* Load/store addressing
= Can calculate address in 379 stage, access memory in
4th stage
* Alignment of memory operands
= Memory access takes only one cycle

