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ALU Control

= ALU used for
* Load/Store: F = add
* Branch: F = subtract
* R-type: F depends on funct field
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ALU control Function
0000 AND
0001 OR
0010 add
0110 subtract
0111 set-on-less-than
1100 NOR




ALU Control

= Assume 2-bit ALUOp derived from opcode

e Combinational logic derives ALU control

opcode ALUOp | Operation funct ALU function ALU control
lw 00 load word XXXXXX | add 0010
SwW 00 store word XXXXXX | add 0010
beq 01 branch equal XXXXXX | subtract 0110
R-type 10 add 100000 | add 0010
subtract 100010 | subtract 0110
AND 100100 | AND 0000
OR 100101 | OR 0001
set-on-less-than 101010 | set-on-less-than 0111




The Main Control Unit

* Control signals derived from instruction

R-type |0 rs rt rd shamt | funct
31:26 25:21 20:16 ‘\15:11 10:6 5:0
Load/ (35 5r43 |rs rt adjdress
Store
31:26 25:21 20:16 \ \ 150 ¢
Branch |4 rs rt édc&ress
31:26 25:21 20:16 15:0




Datapath With Control
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R-Type Instruction
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Load Instruction
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Branch-on-Equal Instruction
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Implementing Jumps

Jump 2 address

31:26 25:0

" Jump uses word address

* Update PC with concatenation of
* Top 4 bits of old PC
* 26-bit jump address
* 00
* Need an extra control signal decoded from opcode



Datapath With Jumps Added
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Performance Issues

Longest delay determines clock period

* Critical path: load instruction

* Instruction memory — register file - ALU — data
memory — register file

Not feasible to vary period for different
instructions

Violates design principle
* Making the common case fast
We will improve performance by pipelining



Pipelining Analogy
* Pipelined laundry: overlapping execution
* Parallelism improves performance
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™ B35 Four loads:
g B0=_ 9
c Bo=l Speedup
D 80 =8/3.5=2.3
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e Speedup
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MIPS Pipeline

= Five stages, one step per stage

IF: Instruction fetch from memory

ID: Instruction decode & register read

EX: Execute operation or calculate address
MEM: Access memory operand

WB: Write result back to register

i A WD —



Pipeline Performance

" Assume time for stages is
* |00ps for register read or write
* 200ps for other stages

* Compare pipelined datapath with single-cycle

datapath
Instr Instr fetch | Register | ALU op Memory | Register | Total time
read access write
lw 200ps 100 ps 200ps 200ps 100 ps
sw 200ps 100 ps 200ps 200ps 700ps
R-format | 200ps 100 ps 200ps 100 ps 600ps
beq 200ps 100 ps 200ps 500ps




Pipeline Performance

Program
execution Time 200 400 600 800 1000 1200 1400 1600 1800
order ' ' | | I | | | |
(in instructions)
Iw $1, 100($0) | "SIt Reg | ALU a2 | Reg
Instructi Dat

lw $2, 200($0) 800 ps nsfgtj:hlon Reg| ALU acc?eZS Reg

Instruction
lw $3, 300($0) 800 ps fetch
Program
execution .. 200 400 600 800 1000 1200 1400

Tme T T T T T T T

order
(in instructions)
w $1,100(60)| | Reg| A | 23 |reg
w $2,200($0) 200 ps | "foen|  |Res| AU | cess |Res
Iw $3, 300(30) 200 ps | | [Rea| AU | DR IReg

200 ps 200 ps 200 ps 200 ps 200 ps



Pipeline Speedup

= [f all stages are balanced
* i.e, all take the same time

* Time between instructions,;,jined

= Time between instructions
Number of stages

nonpipelined

* |f not balanced, speedup is less

" Speedup due to increased throughput
* Latency (time for each instruction) does not decrease



Pipelining and ISA Design

= MIPS ISA designed for pipelining

* All instructions are 32-bits
= Easier to fetch and decode in one cycle
= c.f. x86: 1- to 17-byte instructions
* Few and regular instruction formats
= Can decode and read registers in one step

* Load/store addressing
= Can calculate address in 379 stage, access memory in
4th stage
* Alignment of memory operands
= Memory access takes only one cycle



