
Hanyang University – Computer Architecture [2019]

The Processor

Computer Architecture

2019 1학기

한양대학교공과대학컴퓨터소프트웨어학부
홍석준

ALU Control
 ALU used for

• Load/Store: F = add

• Branch: F = subtract

• R-type: F depends on funct field

§
4
.4

 A
 S

im
p
le

 Im
p
le

m
e
n

ta
tio

n
 S

c
h
e
m

e

ALU control Function

0000 AND

0001 OR

0010 add

0110 subtract

0111 set-on-less-than

1100 NOR

ALU Control

 Assume 2-bit ALUOp derived from opcode
• Combinational logic derives ALU control

opcode ALUOp Operation funct ALU function ALU control

lw 00 load word XXXXXX add 0010

sw 00 store word XXXXXX add 0010

beq 01 branch equal XXXXXX subtract 0110

R-type 10 add 100000 add 0010

subtract 100010 subtract 0110

AND 100100 AND 0000

OR 100101 OR 0001

set-on-less-than 101010 set-on-less-than 0111

The Main Control Unit
 Control signals derived from instruction

0 rs rt rd shamt funct

31:26 5:025:21 20:16 15:11 10:6

35 or 43 rs rt address

31:26 25:21 20:16 15:0

4 rs rt address

31:26 25:21 20:16 15:0

R-type

Load/

Store

Branch

opcode always

read

read,

except

for load

write for

R-type

and load

sign-extend

and add

Datapath With Control

R-Type Instruction

Load Instruction

Branch-on-Equal Instruction

Implementing Jumps

 Jump uses word address

 Update PC with concatenation of
• Top 4 bits of old PC

• 26-bit jump address

• 00

 Need an extra control signal decoded from opcode

2 address

31:26 25:0

Jump

Datapath With Jumps Added

Performance Issues

 Longest delay determines clock period
• Critical path: load instruction

• Instruction memory  register file  ALU  data
memory  register file

 Not feasible to vary period for different
instructions

 Violates design principle
• Making the common case fast

 We will improve performance by pipelining

Pipelining Analogy
 Pipelined laundry: overlapping execution

• Parallelism improves performance

§
4
.5

 A
n
 O

v
e
rv

ie
w

 o
f P

ip
e
lin

in
g Four loads:

 Speedup

= 8/3.5 = 2.3

 Non-stop:

 Speedup

= 2n/0.5n + 1.5 ≈ 4

= number of stages

MIPS Pipeline

 Five stages, one step per stage
1. IF: Instruction fetch from memory

2. ID: Instruction decode & register read

3. EX: Execute operation or calculate address

4. MEM: Access memory operand

5. WB: Write result back to register

Pipeline Performance
 Assume time for stages is

• 100ps for register read or write

• 200ps for other stages

 Compare pipelined datapath with single-cycle
datapath

Instr Instr fetch Register

read

ALU op Memory

access

Register

write

Total time

lw 200ps 100 ps 200ps 200ps 100 ps 800ps

sw 200ps 100 ps 200ps 200ps 700ps

R-format 200ps 100 ps 200ps 100 ps 600ps

beq 200ps 100 ps 200ps 500ps

Pipeline Performance
Single-cycle (Tc= 800ps)

Pipelined (Tc= 200ps)

Pipeline Speedup

 If all stages are balanced
• i.e., all take the same time

• Time between instructionspipelined

= Time between instructionsnonpipelined

Number of stages

 If not balanced, speedup is less

 Speedup due to increased throughput
• Latency (time for each instruction) does not decrease

Pipelining and ISA Design

 MIPS ISA designed for pipelining

• All instructions are 32-bits
 Easier to fetch and decode in one cycle
 c.f. x86: 1- to 17-byte instructions

• Few and regular instruction formats
 Can decode and read registers in one step

• Load/store addressing
 Can calculate address in 3rd stage, access memory in

4th stage

• Alignment of memory operands
 Memory access takes only one cycle

