
Hanyang University – Computer Architecture [2019]

The Processor

Computer Architecture

2019 1학기

한양대학교공과대학컴퓨터소프트웨어학부
홍석준

Hazards

 Situations that prevent starting the next
instruction in the next cycle

 Structure hazards

• A required resource is busy

 Data hazard

• Need to wait for previous instruction to complete its
data read/write

 Control hazard

• Deciding on control action depends on previous
instruction

Structure Hazards

 Conflict for use of a resource

 In MIPS pipeline with a single memory
• Load/store requires data access

• Instruction fetch would have to stall for that cycle

 Would cause a pipeline “bubble”

 Hence, pipelined datapaths require separate
instruction/data memories
• Or separate instruction/data caches

Data Hazards
 An instruction depends on completion of data access

by a previous instruction
• add $s0, $t0, $t1
sub $t2, $s0, $t3

Forwarding (aka Bypassing)
 Use result when it is computed

• Don’t wait for it to be stored in a register

• Requires extra connections in the datapath

Load-Use Data Hazard
 Can’t always avoid stalls by forwarding

• If value not computed when needed

• Can’t forward backward in time!

Code Scheduling to Avoid Stalls
 Reorder code to avoid use of load result in the next

instruction

 C code for A = B + E; C = B + F;

lw $t1, 0($t0)

lw $t2, 4($t0)

add $t3, $t1, $t2

sw $t3, 12($t0)

lw $t4, 8($t0)

add $t5, $t1, $t4

sw $t5, 16($t0)

stall

stall

lw $t1, 0($t0)

lw $t2, 4($t0)

lw $t4, 8($t0)

add $t3, $t1, $t2

sw $t3, 12($t0)

add $t5, $t1, $t4

sw $t5, 16($t0)

11 cycles13 cycles

Control Hazards

 Branch determines flow of control

• Fetching next instruction depends on branch outcome

• Pipeline can’t always fetch correct instruction
 Still working on ID stage of branch

 In MIPS pipeline

• Need to compare registers and compute target early
in the pipeline

• Add hardware to do it in ID stage

Stall on Branch
 Wait until branch outcome determined before

fetching next instruction

Branch Prediction

 Longer pipelines can’t readily determine branch
outcome early
• Stall penalty becomes unacceptable

 Predict outcome of branch
• Only stall if prediction is wrong

 In MIPS pipeline
• Can predict branches not taken

• Fetch instruction after branch, with no delay

MIPS with Predict Not Taken

Prediction

correct

Prediction

incorrect

More-Realistic Branch Prediction

 Static branch prediction
• Based on typical branch behavior

• Example: loop and if-statement branches

 Predict backward branches taken

 Predict forward branches not taken

 Dynamic branch prediction
• Hardware measures actual branch behavior

 e.g., record recent history of each branch

• Assume future behavior will continue the trend

 When wrong, stall while re-fetching, and update
history

Pipeline Summary

 Pipelining improves performance by increasing
instruction throughput
• Executes multiple instructions in parallel

• Each instruction has the same latency

 Subject to hazards
• Structure, data, control

 Instruction set design affects complexity of pipeline
implementation

The BIG Picture

MIPS Pipelined Datapath

§
4
.6

 P
ip

e
lin

e
d
 D

a
ta

p
a
th

 a
n
d
 C

o
n
tro

l

WB

MEM

Right-to-left

flow leads to

hazards

Pipeline registers
 Need registers between stages

• To hold information produced in previous cycle

Pipeline Operation

 Cycle-by-cycle flow of instructions through the
pipelined datapath
• “Single-clock-cycle” pipeline diagram

 Shows pipeline usage in a single cycle

 Highlight resources used

• c.f. “multi-clock-cycle” diagram

 Graph of operation over time

 We’ll look at “single-clock-cycle” diagrams for
load & store

IF for Load, Store, …

ID for Load, Store, …

EX for Load

MEM for Load

WB for Load

Wrong

register

number

Corrected Datapath for Load

EX for Store

MEM for Store

WB for Store

Multi-Cycle Pipeline Diagram
 Form showing resource usage

Multi-Cycle Pipeline Diagram
 Traditional form

Single-Cycle Pipeline Diagram
 State of pipeline in a given cycle

