{aa) DI
o HAHYANG UHIVEREITY

The Processor

Computer Architecture

2019 1&}7|

Hanyang University — Computer Architecture [2019]

Hazards

Situations that prevent starting the next
instruction in the next cycle

Structure hazards

* A required resource is busy

Data hazard

* Need to wait for previous instruction to complete its
data read/write

Control hazard

* Deciding on control action depends on previous
instruction

Structure Hazards

= Conflict for use of a resource

= |n MIPS pipeline with a single memory
* Load/store requires data access
* Instruction fetch would have to stall for that cycle
= Would cause a pipeline "bubble”
* Hence, pipelined datapaths require separate
instruction/data memories
* Or separate instruction/data caches

Data Hazards

= An instruction depends on completion of data access
by a previous instruction

« add $s0, $tO, $tl
sub $t2, $s0, $t3

, 200 400 600 800 1000 1200 1400 1600
Time T I I I I I >

I
add $s0, $t0, $t1 | IF —E ID %—MEM WB |
bubble bubble (" bubble bubble) (" bubble
@ @ O @ O
D

bubble bubble) (bubble bubble/ (" bubble
a @ @, @ @
: %—MEM WB |

sub $t2, $s0, $t3 IF —E |

Forwarding (aka Bypassing)

= Use result when it is computed
* Don’t wait for it to be stored in a register
* Requires extra connections in the datapath

Program
execution
order Time

(in instructions)
add $s0, $t0, $t1

sub $t2, $s0, $t3

200 400 600 800 1000

MEM WB |

Load-Use Data Hazard

= Can’t always avoid stalls by forwarding
* If value not computed when needed
Can’t forward backward in time!

Program
execution 200 400 600 800 1000 1200 1400

order Time . :
(in instructions) I
Iw $s0, 20($t1) IF —E ID SEX—MEM

MEM|—{ WB |

sub $t2, $s0, $t3 IF

Code Scheduling to Avoid Stalls

= Reorder code to avoid use of load result in the next
instruction

= CcodeforA = B + E; C = B + F;

stall

stall

Control Hazards

= Branch determines flow of control
* Fetching next instruction depends on branch outcome

* Pipeline can’t always fetch correct instruction
= Still working on ID stage of branch

= |n MIPS pipeline

* Need to compare registers and compute target early
in the pipeline
* Add hardware to do it in ID stage

Stall on Branch

= Wait until branch outcome determined before
fetching next instruction

Program
execution Tim 200 400 600 800 1000 1200 1400 -
order ime T T | T I T T >
(in instructions)

add $4,85,86 "] [Rea| AW | G2 |Reg

Instruction Data
beq $1, $2, 40 m fetch Reg| ALU | ccess |Pe9
bubble/_bubble/(bubble/ bubble’(bubble
@ @ © ©
or $7, $8, $9 < »Instruction Data
y 400 ps fetch Reg| ALU access | °9

Branch Prediction

* Longer pipelines can’t readily determine branch
outcome early

 Stall penalty becomes unacceptable

" Predict outcome of branch
* Only stall if prediction is wrong
= |[n MIPS pipeline
* Can predict branches not taken
* Fetch instruction after branch, with no delay

MIPS with Predict Not Taken

Program
execution Time 200 400 600 800 1000 1200 1400 R
Order T T T T T T T =
(in instructions)
add$4,55,86 |"ar| res| mw | 22, fneo
e e I e e = L
~+——Instruction Data
lw $3, 300($0) 200 ps| fetch Reg| ALU access | 19
Y
Program
execution Time 200 400 600 800 1000 1200 1400
order I I T I I I I
(in instructions)
Instructi Data

add $4’ $5’ $6 nsf;l::hlon Reg ALU access Reg

beq $1, $2, 40 m'”s’:;‘g:c’” Reg| ALU agj‘;zs Reg

bubbley(bubbl ubbl ubble/(bubble
9

—or $7, $8, $9 - »(Instruction Data

\ 400 ps fetch Reg | ALU access | °9

More-Realistic Branch Prediction

= Static branch prediction
* Based on typical branch behavior
* Example: loop and if-statement branches
= Predict backward branches taken
= Predict forward branches not taken

* Dynamic branch prediction
 Hardware measures actual branch behavior
= e.g., record recent history of each branch
* Assume future behavior will continue the trend

= When wrong, stall while re-fetching, and update
history

Pipeline Summary

The BIG Picture

" Pipelining improves performance by increasing
instruction throughput

* Executes multiple instructions in parallel
* Each instruction has the same latency

= Subject to hazards
e Structure, data, control

" Instruction set design affects complexity of pipeline
implementation

MIPS Pipelined Datapath

EX: Execute/
address calculation

ID: Instruction decode/ WB: Write back

register file read

IF: Instruction fetch MEM: Memory access

(op)
.
o))
9

©

@
=
®

Q.
O
)

—
Q

°

D

—
>
Q

>

Q.
@)
)

S

=
=

| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
> Add | |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |

4— > ADD Add
result
Shift
left 2
0 M »| Read Read
u pC Address register 1 data 1
X Read |
1 register 2 Address
Instruction | Registers | 0 FLe;:‘
| Write Read I " Data
Instruction | register data 2 | u Memory
memor X
Y : Write : 1
data Write
NV | >
A I data
|
|
|

|
/:/
1

: 6\ Sign-
| ~ | extend
|

|

|

|

|

|

|

|

Pipeline registers

* Need registers between stages
* To hold information produced in previous cycle

IF/ID ID/EX EX/MEM MEM/WB
—
Add
4 —
L0
" 5
u PC Address B
X =
-\ 1 @
- Lol »
Instruct Read
memory » > Address data ||
Data
memory

Pipeline Operation

" Cycle-by-cycle flow of instructions through the
pipelined datapath
* “Single-clock-cycle” pipeline diagram
= Shows pipeline usage in a single cycle
= Highlight resources used
* c.f. “multi-clock-cycle” diagram
= Graph of operation over time

= We'll look at “single-clock-cycle” diagrams for
load & store

IF for Load,

Iw

Instruction fetch

tore, ...

>Add

ID/EX

Address

Instruction
memory

Instruction

Shift
left 2

. | Read
" | register 1 Read
data 1
Read
register 2
Registers Rgaq
Write data 2
register
) Write
data
1? _ | Sign-

v | extend

32

d Add
result

EX/MEM

—
@ Address
Data
memory
_ | Write
7| data

Read
data

MEM/WB

Y

for Load, Store, ...

Iw

Instruction decode

Data
memory

Read
data

MEM/WB

IFID ID/EX EX/MEM
Add >
) 9 el
Shift
left 2
=
Address .% Read
2 register 1 Read >
B data 1
= Read ——
Instruction register %e .
memory) 9ISIers Read - > @ Address
Write data 2 -
register
Write
™ data
Write
o " | data
16 Sign- 32
| extend

EX for Load

| " |
| Execution |
IF/ID ID/EX EX/MEM MEM/WB
—
Add >
4 —» AdgAdd N
Shift result
left 2
0
M
u PC Address c Read
X S[| register 1 Read
1 9 data 1
= _ |Read > | >
Instruction IS " |register 2 Foad
> Registers - N
memory — | write 9 Read > »| Address data [
" | register data 2 Data
—-| Write memory
data
Write
> | data
1 . _
E\i Sign- | 32 || >
vV | extend

“x = 2°

for Load

Add

Address

Instruction
memory

IF/ID

Y

ID/EX

Instruction

Shift
left 2

Read
" | register 1 Read
data 1
Read
register 2
Registers goaq
Write data 2
register
Write
data
16 Sign-

extend

| lw |

I Memory I
EX/MEM MEMAWB

-
Read
> @ Address data [
Data
memory

Write
data

Y

B for

Oa

EX/MEM
Add
result
> [
> 2 o

IF/D ID/EX
Add >
4 —
Shift
left 2
c
Address -% Read
3 register 1 Read
£ data 1
£ Read
. ister 2
Inr::::::n > / Registers g
(Write data 2
regisjér
rite
data
16 Sign- 32

A)

extend

Address
Data
memory
Write
data

Read
data

rite back

MEM/MWB
ma 0
M
u
X

orrected Datapath for

Oa

A J

Add

IFID

Address

Instruction
memory

o | Read
"~ | register 1

Instruction

Read
register 2

Write
register
Write
data

!

Read
data 1

Registers gaaq

data 2

Sign-
extend

ID/EX EX/MEM
Add e’;“ﬂ >
Shift resu
left 2
> —
> "y @ Address
N | write
o 7| data

y

Data
memory

Read
data

MEM/WB

EX for Store

sw

Execution

xc=°

PC

Y

IF/ID ID/EX EX/MEM MEM/WB
Add > - \
4 AdgAdd >
Shift result
left 2
Address = . | Read Read
2 register 1 ea
S data 1
Z »| Read Zero =
Instruction _ < register 2 ALU ALy _ Read
memory o —e | write ReQIStersRead result > Address data [
- register data 2 Data
; memor'
—| Write o y
data
-~ Write
v data
1‘\3 sign- | 32 - >
v extend

for Store

Add

Address

Instruction
memory

IF/ID

ID/EX

Instruction

Shift
left 2

Adg Add

ﬂ

Read
" | register 1 Read
data 1
Read
register 2
Registers goaq
Write data 2
register
Write
data
16 | sign-

v | extend

Write
data

| sSw |

I Memory I
EX/MEM MEM/WB
T -

Read
> @ Address data [
Data
memory

VVB for Store

Add

IF/ID

ID/EX

Address

Instruction
memory

Instruction

Read
register 1

Read

register 2
Registers

Write
register
Write
data

Read
data 1

Read
data 2

Shift
left 2

Add
result

EX/MEM
> -
> @ Address
Data
memory
Write

data

Read
data

sw
w

rite-back

MEM/WB
s 0
M
u
X

Multi-Cycle Pipeline Diagram

* Form showing resource usage

Time (in clock cycles)
CC1 cc2 CC3 CC4 CC5 CC#6 cc7 CCs CC9

Program
execution
order

(in instructions)
a0d $12, 83, 34 [r|_|.a
lw $13, 24($1) EI.+ I:I:’-I~I_~rl—lg|

add $14, $5, $6

sub $11, $2, $3

\

Multi-Cycle Pipeline Diagram

= Traditional form

Program
execution
order

(in instructions)

Iw $10, 20($1)
sub $11, $2, $3
add $12, $3, $4

lw $13, 24($1)

Time (in clock cycles)

add $14, $5, $6

CC1 cCc2 CC3 CC4 CC5h CCe6 CC7 cCs8 CC9
Instruction | Instruction Execution Data Write back
fetch decode access
Instruction | Instruction Execution Data Write back
fetch decode access
Instruction | Instruction Execution Data Write back
fetch decode access
Instruction | Instruction) Data)
fetch decode Execution access Write back
Instruction | Instruction Execution Data Write back
fetch decode access

Single-Cycle Pipeline Diagram

= State of pipeline in a given cycle

add §14, $5, $6

lw $13, 24 ($1)

add $12, $3, $4

sub $11, $2, $3

| Iw $10, 20($1) |

| Write-back |

MEM/WB

Instruction fetch Instruction decode | Execution | Memory
IF/ID ID/EX EX/MEM
Add >
4 st
Shift
left 2
(0
M
u PC » Address Read
x 5 register 1 Read >
-\ 1 = data 1
E Read Zero =
£ > -
Instruction c register 2 ALU Ay
— Registers Read
memory | wiite phivt > OM result Address
register u Data
Write X memory
| data -\ 1
Write
data
16\ Sign- 32
v extend —

