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Hazards

Situations that prevent starting the next
instruction in the next cycle

Structure hazards

* A required resource is busy

Data hazard

* Need to wait for previous instruction to complete its
data read/write

Control hazard

* Deciding on control action depends on previous
instruction



Structure Hazards

= Conflict for use of a resource

= |n MIPS pipeline with a single memory
* Load/store requires data access
* Instruction fetch would have to stall for that cycle
= Would cause a pipeline "bubble”
* Hence, pipelined datapaths require separate
instruction/data memories
* Or separate instruction/data caches



Data Hazards

= An instruction depends on completion of data access
by a previous instruction
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Forwarding (aka Bypassing)

= Use result when it is computed
* Don’t wait for it to be stored in a register
* Requires extra connections in the datapath
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Load-Use Data Hazard

= Can’t always avoid stalls by forwarding
* If value not computed when needed
Can’t forward backward in time!
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Code Scheduling to Avoid Stalls

= Reorder code to avoid use of load result in the next
instruction

= CcodeforA = B + E; C = B + F;

stall

stall




Control Hazards

= Branch determines flow of control
* Fetching next instruction depends on branch outcome

* Pipeline can’t always fetch correct instruction
= Still working on ID stage of branch

= |n MIPS pipeline

* Need to compare registers and compute target early
in the pipeline
* Add hardware to do it in ID stage



Stall on Branch

= Wait until branch outcome determined before
fetching next instruction
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Branch Prediction

* Longer pipelines can’t readily determine branch
outcome early

 Stall penalty becomes unacceptable

" Predict outcome of branch
* Only stall if prediction is wrong
= |[n MIPS pipeline
* Can predict branches not taken
* Fetch instruction after branch, with no delay



MIPS with Predict Not Taken
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More-Realistic Branch Prediction

= Static branch prediction
* Based on typical branch behavior
* Example: loop and if-statement branches
= Predict backward branches taken
= Predict forward branches not taken

* Dynamic branch prediction
 Hardware measures actual branch behavior
= e.g., record recent history of each branch
* Assume future behavior will continue the trend

= When wrong, stall while re-fetching, and update
history



Pipeline Summary

The BIG Picture

" Pipelining improves performance by increasing
instruction throughput

* Executes multiple instructions in parallel
* Each instruction has the same latency

= Subject to hazards
e Structure, data, control

" Instruction set design affects complexity of pipeline
implementation



MIPS Pipelined Datapath

EX: Execute/
address calculation

ID: Instruction decode/ WB: Write back

register file read

IF: Instruction fetch MEM: Memory access
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Pipeline registers

* Need registers between stages
* To hold information produced in previous cycle
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Pipeline Operation

" Cycle-by-cycle flow of instructions through the
pipelined datapath
* “Single-clock-cycle” pipeline diagram
= Shows pipeline usage in a single cycle
= Highlight resources used
* c.f. “multi-clock-cycle” diagram
= Graph of operation over time

= We'll look at “single-clock-cycle” diagrams for
load & store
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for Load, Store, ...
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EX for Load
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for Load
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orrected Datapath for
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EX for Store
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for Store

Add

Address

Instruction
memory

IF/ID

ID/EX

Instruction

Shift
left 2

Adg Add

ﬂ

Read
" | register 1 Read
data 1
Read
register 2
Registers goaq
Write data 2
register
Write
data
16 | sign-

v | extend

Write
data

| sSw |

I Memory I
EX/MEM MEM/WB
T -

Read
> @ Address data [
Data
memory




VVB for Store
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Multi-Cycle Pipeline Diagram

* Form showing resource usage
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Program
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Multi-Cycle Pipeline Diagram

= Traditional form
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Single-Cycle Pipeline Diagram

= State of pipeline in a given cycle
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