
Hanyang University – Computer Architecture [2019]

The Processor

Computer Architecture

2019 1학기

한양대학교공과대학컴퓨터소프트웨어학부
홍석준

Pipelined Control (Simplified)

Pipelined Control
 Control signals derived from instruction

• As in single-cycle implementation

Pipelined Control

Data Hazards in ALU Instructions

 Consider this sequence:
sub $2, $1,$3
and $12,$2,$5
or $13,$6,$2
add $14,$2,$2
sw $15,100($2)

 We can resolve hazards with forwarding
• How do we detect when to forward?

§4.7 D
ata H

azards: Forw
arding vs. Stalling

Dependencies & Forwarding

Detecting the Need to Forward
 Pass register numbers along pipeline

• e.g., ID/EX.RegisterRs = register number for Rs sitting
in ID/EX pipeline register

 ALU operand register numbers in EX stage are
given by
• ID/EX.RegisterRs, ID/EX.RegisterRt

 Data hazards when
1a. EX/MEM.RegisterRd = ID/EX.RegisterRs
1b. EX/MEM.RegisterRd = ID/EX.RegisterRt
2a. MEM/WB.RegisterRd = ID/EX.RegisterRs
2b. MEM/WB.RegisterRd = ID/EX.RegisterRt

Fwd from
EX/MEM
pipeline reg

Fwd from
MEM/WB
pipeline reg

Detecting the Need to Forward

 But only if forwarding instruction will write to a
register!
• EX/MEM.RegWrite, MEM/WB.RegWrite

 And only if Rd for that instruction is not $zero
• EX/MEM.RegisterRd ≠ 0,

MEM/WB.RegisterRd ≠ 0

Forwarding Paths

Forwarding Conditions

 EX hazard
• if (EX/MEM.RegWrite and (EX/MEM.RegisterRd ≠ 0)

and (EX/MEM.RegisterRd = ID/EX.RegisterRs))
ForwardA = 10

• if (EX/MEM.RegWrite and (EX/MEM.RegisterRd ≠ 0)
and (EX/MEM.RegisterRd = ID/EX.RegisterRt))

ForwardB = 10
 MEM hazard

• if (MEM/WB.RegWrite and (MEM/WB.RegisterRd ≠ 0)
and (MEM/WB.RegisterRd = ID/EX.RegisterRs))

ForwardA = 01
• if (MEM/WB.RegWrite and (MEM/WB.RegisterRd ≠ 0)

and (MEM/WB.RegisterRd = ID/EX.RegisterRt))
ForwardB = 01

Double Data Hazard

 Consider the sequence:
add $1,$1,$2
add $1,$1,$3
add $1,$1,$4

 Both hazards occur
• Want to use the most recent

 Revise MEM hazard condition
• Only fwd if EX hazard condition isn’t true

Revised Forwarding Condition

 MEM hazard
• if (MEM/WB.RegWrite and (MEM/WB.RegisterRd ≠ 0)

and not (EX/MEM.RegWrite and (EX/MEM.RegisterRd ≠ 0)
and (EX/MEM.RegisterRd = ID/EX.RegisterRs))

and (MEM/WB.RegisterRd = ID/EX.RegisterRs))
ForwardA = 01

• if (MEM/WB.RegWrite and (MEM/WB.RegisterRd ≠ 0)
and not (EX/MEM.RegWrite and (EX/MEM.RegisterRd ≠ 0)

and (EX/MEM.RegisterRd = ID/EX.RegisterRt))
and (MEM/WB.RegisterRd = ID/EX.RegisterRt))

ForwardB = 01

Datapath with Forwarding

Load-Use Data Hazard

Need to stall
for one cycle

Load-Use Hazard Detection

 Check when using instruction is decoded in ID
stage

 ALU operand register numbers in ID stage are
given by
• IF/ID.RegisterRs, IF/ID.RegisterRt

 Load-use hazard when
• ID/EX.MemRead and

((ID/EX.RegisterRt = IF/ID.RegisterRs) or
(ID/EX.RegisterRt = IF/ID.RegisterRt))

 If detected, stall and insert bubble

How to Stall the Pipeline

 Force control values in ID/EX register
to 0
• EX, MEM and WB do nop (no-operation)

 Prevent update of PC and IF/ID register
• Using instruction is decoded again
• Following instruction is fetched again
• 1-cycle stall allows MEM to read data for lw

 Can subsequently forward to EX stage

Stall/Bubble in the Pipeline

Stall inserted
here

Stall/Bubble in the Pipeline

Or, more
accurately…

Datapath with Hazard Detection

Stalls and Performance

 Stalls reduce performance
• But are required to get correct results

 Compiler can arrange code to avoid hazards and
stalls
• Requires knowledge of the pipeline structure

The BIG Picture

Branch Hazards
 If branch outcome determined in MEM

§4.8 C
ontrol H

azards

PC

Flush these
instructions
(Set control
values to 0)

Reducing Branch Delay

 Move hardware to determine outcome to ID
stage
• Target address adder
• Register comparator

 Example: branch taken
36: sub $10, $4, $8
40: beq $1, $3, 7
44: and $12, $2, $5
48: or $13, $2, $6
52: add $14, $4, $2
56: slt $15, $6, $7

...
72: lw $4, 50($7)

Example: Branch Taken

Example: Branch Taken

	The Processor
	Pipelined Control (Simplified)
	Pipelined Control
	Pipelined Control
	Data Hazards in ALU Instructions
	Dependencies & Forwarding
	Detecting the Need to Forward
	Detecting the Need to Forward
	Forwarding Paths
	Forwarding Conditions
	Double Data Hazard
	Revised Forwarding Condition
	Datapath with Forwarding
	Load-Use Data Hazard
	Load-Use Hazard Detection
	How to Stall the Pipeline
	Stall/Bubble in the Pipeline
	Stall/Bubble in the Pipeline
	Datapath with Hazard Detection
	Stalls and Performance
	Branch Hazards
	Reducing Branch Delay
	Example: Branch Taken
	Example: Branch Taken

