{aa) DI
o HAHYANG UHIVEREITY

The Processor

Computer Architecture

2019 &7

Hanyang University — Computer Architecture [2019]

Pipelined Control (Simplified)

MemtoReg

RegDst

PCSrc
IF/ID ID/IEX EX/MEM MEM/WB
Add > > \
4 AddAdld -
Shift result Branch
left 2 I_:
L0 RegWrite
M |
u PC »[Address & | Read
x 5 ™ register 1 Read > > MemWrite
>\ 1 g data 1 |
| Lo—r E%?ger 5 ALUSIC Zero
nstruction
—4 Registers > Read
memory wiite o2 Read > Address data [|
register data 2 Data
—»-| Write memory
data
_ Write
. " | data
Instruction
(15-0) 16 [gjgn. | 32 & [A 1 >
¥ extend " | control MemRead
Instruction
(20-16)
> 0) ALUOp
M > -
Instruction :
(15-11) 1
. >

Pipelined Control

= Control signals derived from instruction
e As in single-cycle implementation

\ tWB

Instruction \ -

Control

IF/ID ID/EX EX/MEM MEM/WB

Pipelined Control

[15-11]

EM/WB

xc=z ©

MemtoReg

L RegDst

PCSrc
ID/EX
T|we LEWEM
- wB
Control M | M
EX M WB
IFID
Add > \I
4 Add Add >
Branch
2 L]
§ ALUSre
8’ —
(0 T £
M =
u PC +| Address 5 .| Read E
x = ™ register 1 Read > 2
|1 2 data 1
E - Read Zero > —
Instruction = register2 P ALU aLy Read || |
memory wiite | $ Read >0 resul ST Address data
" | register data 2 M
w u Data
. rite X memo
data o=\ v
N Write
o | data
Instruction
[15-0] 6 ALU
- control MemRead
Instruction
[20-16]
0
M = -
Instruction u
X

Data Hazards in ALU Instructions

= Consider this sequence:

sub , $1,%$3
and $12, ,$5
or %$13,%6,

add $14,

sw $15,100C)

* We can resolve hazards with forwarding
e How do we detect when to forward?

wn
.
~
O
b
—
QO
L
&b
N
b
=
o
-
y
o
=
=
QD
=
=
-

(@]
<
-
0
—
L
=7

(@]

Dependencies & Forwarding

Time (in clock cycles) >
Value of CC1 cC2 CC3 CC4 CC5 CCe6 CC7 cCs8 CcC9

register $2: 10 10 10 10 10/-20 —20 -20 -20 -20
Program
execution
order
(in instructions) =
Iy ol
sub $2, $1, $3 IM LFleg -\ 11DM Regjl
-
and $12, $2, $5 IM — —E{Heg
or $13, $6, 52 M oRé
1
add $14, $2,52 IM —Eng.

DM -Regjl

v Sw$15,100(%2)

Detecting the Need to Forward

= Pass register numbers along pipeline

e e.g., ID/EX RegisterRs = register number for Rs sitting
in ID/EX pipeline register

= ALU operand register numbers in EX stage are
given by

e ID/EX.RegisterRs, ID/EX.RegisterRt
" Data hazards when
EX/MEM.RegisterRd = ID/EX.RegisterRs
EX/MEM.RegisterRd = ID/EX.RegisterRt

MEM/WB.RegisterRd = ID/EX.RegisterRs -

.

AN

MEM/WB.RegisterRd = ID/EX.RegisterRt

Detecting the Need to Forward

= But only if forwarding instruction will write to a
register!

 EX/MEM.RegWrite, MEM/WB.RegWrite

= And only if Rd for that instruction is not $zero

e EX/MEM.RegisterRd # 0,
MEM/WB.RegisterRd # 0

Forwarding Paths

ID/EX

b

Registers

EX/MEM

F

Rs

orwardA

ALU—

Rt

Rt

ForwardB

ol

Rd

 J

T4x=g)|%¢f5)

Y

Data
memory

\

MEM/WB

.
-

u

A J

X

>

~ Forwarding \ —-—

EX/MEM.RegisterRd

MEM/WB.RegisterRd

>\ unit I

b. With forwarding

Forwarding Conditions

= EX hazard

o if (EX/MEM.RegWrite and (EX/MEM.RegisterRd # 0)
and (EX/MEM.RegisterRd = ID/EX.RegisterRs))

o if (EX/MEM.RegWrite and (EX/MEM.RegisterRd # 0)
and (EX/MEM.RegisterRd = ID/EX.RegisterRt))

= MEM hazard

 if (MEM/WB.RegWrite and (MEM/VWVB.RegisterRd # 0)
and (MEM/WB.RegisterRd = ID/EX.RegisterRs))

 if (MEM/WB.RegWrite and (MEM/VWVB.RegisterRd # 0)
and (MEM/WB.RegisterRd = ID/EX.RegisterRt))

Double Data Hazard

= Consider the sequence:

add 91,52
add , o 293
add $1, ,%$4

= Both hazards occur
 Want to use the most recent
= Revise MEM hazard condition
e Only fwd if EX hazard condition isn’t true

Revised Forwarding Condition

= MEM hazard
 if (MEM/WB.RegWrite and (MEM/VWVB.RegisterRd # 0)

and (MEM/WB.RegisterRd = ID/EX.RegisterRs))
ForwardA =01

 if (MEM/WB.RegWrite and (MEM/VWVB.RegisterRd # 0)

and (MEM/WB.RegisterRd = ID/EX.RegisterRt))
ForwardB = Ol

Datapath with Forwarding

xc=

ID/EX
’_’WB EX/MEM
Control - M »\WB MEM/WB
IF/ID L EX - M > WBI—
» U >
h :L
c —
= >
é Registers ALU . .-
93] L
Instruction | | |5 >
memory i | Data
memory
IF/ID.RegisterRs Rs _
IF/ID.RegisterRt | Rt
IF/ID.RegisterRt Rt EX/MEM.RegisterRd
IF/ID.RegisterRd | |Rd "
MEM/WB.RegisterRd
L 4

Load-Use Data Hazard

Time (in clock cycles)
CC1 cC2 CC3 CC4 CC5 CC6 cc7 ccs CcCg

Program
execution
order

(in instructions)

r—

lw $2, 20($1) IM Reg

and $4, $2, $5 IM

-1
e
-1
DM — —‘Eeg:

or $8, $2, $6

I = -
add $9, $4, $2 M — —E:f{eg » —[DM — —I%g:

r= — -1
L slt $1, $6, $7 IM — H-Reg). DM Reg!

Load-Use Hazard Detection

= Check when using instruction is decoded in ID
stage
= ALU operand register numbers in ID stage are
given by
* IF/ID.RegisterRs, IF/ID.RegisterRt

= | oad-use hazard when

e ID/EX.MemRead and
((ID/EX.RegisterRt = |IF/ID.RegisterRs) or
(ID/EX.RegisterRt = |F/ID.RegisterRt))

= |f detected, stall and insert bubble

How to Stall the Pipeline

* Force control values in ID/EX register
to 0

* EX, MEM and WB do nop (no-operation)

* Prevent update of PC and IF/ID register
e Using instruction is decoded again
e Following instruction is fetched again
 |-cycle stall allows MEM to read data for Iw
= Can subsequently forward to EX stage

Stall/Bubble in the Pipeline

Time (in clock cycles)

CC1 cC2 CC3 CC4 CC5 CC6

Program
execution
order

(in instructions)

w $2, 20($1) M

and becomes nop

and $4, $2, $5

or $8, $2, $6

b
:

v add $9, $4, $2 IM

CC7

| ———

cCs8

DM

CC9 CC10

F{e_g:
— 1

Stall/Bubble in the Pipeline

Time (in clock cycles) >
CC1 CC2 CC3 CC4 CC5 CCé6 CC7 cCs8 CC9 CcC 10

Program
execution
order

(in instructions)

lw $2, 20($1) IM

and becomes nop

and $4, $2, $5 stalled in ID

or $8, $2, $6 stalled in IF

add $9, $4, $2

DM Reg
—

Datapath with Hazard Detection

PCWrite

H_,

Instruction
memory

IF/DWrite

/ Hazard \
detection |«

ID/EX.MemRead

|_I\fEM/W B
WB

— unit /
A
ID/EX
WB EX/MEM
»(Control M = \WB
ID 0 EX > M
Y
> > > M
> U »

5 - X
5 Registers _/
3 | S ™
E e ALUP-
1 R M Data

> u > memory

. X

IF/ID.RegisterRs - >

IF/ID.RegisterRt .

IF/ID.RegisterRt _ Rt M

IF/ID.RegisterRd - Rd. g - -

ID/EX.RegisterRt J

Rs Forwarding
Rt unit -

Y

/i

Y

xc=s

Stalls and Performance

The BIG Picture

= Stalls reduce performance
e But are required to get correct results

= Compiler can arrange code to avoid hazards and
stalls

e Requires knowledge of the pipeline structure

Branch Hazards

= |f branch outcome determined in MEM

Time (in clock cycles) -
CC1 CC2 CC3 CC4 CC5 CC#s Ccc7 CcCcs8 Cca

Program
execution
order

(in instructions)

40 beq $1, $3, 28 H—I—E;r

44 and $12, $2, $5

48 or $13, $6, $2

52 add $14, $2, $2

—

172 Iw $4, 50($7)

Reducing Branch Delay

= Move hardware to determine outcome to |ID
stage
e Target address adder
e Register comparator

= Example: branch taken

36: sub $10, $4, $8
40: beq $1, $3, 7

44: and $12, $2, $5
48: or $13, $2, $6
52: add $14, $4, $2
56: slt $15, $6, $7

72: Iw $4, 50($7)

Example: Branch Taken

and $12, $2, $5 beq $1, $3, 7 sub $10, $4, $8 before<1> before<2>

IF.Flush

/ Hazard

detection |

unit /
28
i 3lk
72
$1
Regi *
$3 |

1
IDJEX

g—_-_-_-_—_—_-_-_-_-_—_

m
X

b=

Data
memory

xc=

C

S

-
i iForwardingj :: :
unit
AN

Clock 3

Example: Branch Taken

Iw $4, 50($7)
IF.Flush

Bubble (nop) beq $1, $3, 7 sub $10, . .. before<1>

Hazard

:‘ detection -i
unit)

M

u

{] 0 |X
Registers @

EX/MEM

leit 2

Data
memory

Forwarding
unit -
o

Clock 4

	The Processor
	Pipelined Control (Simplified)
	Pipelined Control
	Pipelined Control
	Data Hazards in ALU Instructions
	Dependencies & Forwarding
	Detecting the Need to Forward
	Detecting the Need to Forward
	Forwarding Paths
	Forwarding Conditions
	Double Data Hazard
	Revised Forwarding Condition
	Datapath with Forwarding
	Load-Use Data Hazard
	Load-Use Hazard Detection
	How to Stall the Pipeline
	Stall/Bubble in the Pipeline
	Stall/Bubble in the Pipeline
	Datapath with Hazard Detection
	Stalls and Performance
	Branch Hazards
	Reducing Branch Delay
	Example: Branch Taken
	Example: Branch Taken

