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Pipelined Control (Simplified)
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Pipelined Control

= Control signals derived from instruction
e As in single-cycle implementation
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Pipelined Control
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Data Hazards in ALU Instructions

= Consider this sequence:

sub , $1,%$3
and $12, ,$5
or %$13,%6,

add $14,

sw $15,100C )

* We can resolve hazards with forwarding
e How do we detect when to forward?
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Dependencies & Forwarding

Time (in clock cycles) >
Value of CC1 cC2 CC3 CC4 CC5 CCe6 CC7 cCs8 CcC9

register $2: 10 10 10 10 10/-20 —20 -20 -20 -20
Program
execution
order
(in instructions) =
Iy ol
sub $2, $1, $3 IM LFleg -\ 11DM Regjl
-
and $12, $2, $5 IM — —E{Heg
or $13, $6, 52 M oRé
1
add $14, $2,52 IM —Eng.

DM -Regjl

v Sw$15,100(%2)




Detecting the Need to Forward

= Pass register numbers along pipeline

e e.g., ID/EX RegisterRs = register number for Rs sitting
in ID/EX pipeline register

= ALU operand register numbers in EX stage are
given by

e ID/EX.RegisterRs, ID/EX.RegisterRt
" Data hazards when
EX/MEM.RegisterRd = ID/EX.RegisterRs
EX/MEM.RegisterRd = ID/EX.RegisterRt

MEM/WB.RegisterRd = ID/EX.RegisterRs -

.
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MEM/WB.RegisterRd = ID/EX.RegisterRt




Detecting the Need to Forward

= But only if forwarding instruction will write to a
register!

 EX/MEM.RegWrite, MEM/WB.RegWrite

= And only if Rd for that instruction is not $zero

e EX/MEM.RegisterRd # 0,
MEM/WB.RegisterRd # 0



Forwarding Paths
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Forwarding Conditions

= EX hazard

o if (EX/MEM.RegWrite and (EX/MEM.RegisterRd # 0)
and (EX/MEM.RegisterRd = ID/EX.RegisterRs))

o if (EX/MEM.RegWrite and (EX/MEM.RegisterRd # 0)
and (EX/MEM.RegisterRd = ID/EX.RegisterRt))

= MEM hazard

 if (MEM/WB.RegWrite and (MEM/VWVB.RegisterRd # 0)
and (MEM/WB.RegisterRd = ID/EX.RegisterRs))

 if (MEM/WB.RegWrite and (MEM/VWVB.RegisterRd # 0)
and (MEM/WB.RegisterRd = ID/EX.RegisterRt))



Double Data Hazard

= Consider the sequence:

add 91,52
add , o 293
add $1, ,%$4

= Both hazards occur
 Want to use the most recent
= Revise MEM hazard condition
e Only fwd if EX hazard condition isn’t true



Revised Forwarding Condition

= MEM hazard
 if (MEM/WB.RegWrite and (MEM/VWVB.RegisterRd # 0)

and (MEM/WB.RegisterRd = ID/EX.RegisterRs))
ForwardA =01

 if (MEM/WB.RegWrite and (MEM/VWVB.RegisterRd # 0)

and (MEM/WB.RegisterRd = ID/EX.RegisterRt))
ForwardB = Ol



Datapath with Forwarding
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Load-Use Data Hazard

Time (in clock cycles)
CC1 cC2 CC3 CC4 CC5 CC6 cc7 ccs CcCg

Program
execution
order

(in instructions)

r—

lw $2, 20($1) IM Reg

and $4, $2, $5 IM

-1
e
-1
DM — —‘Eeg:

or $8, $2, $6

I = -
add $9, $4, $2 M — —E:f{eg » —[ DM — —I%g:

r= — -1
L slt $1, $6, $7 IM — H-Reg ). DM Reg!




Load-Use Hazard Detection

= Check when using instruction is decoded in ID
stage
= ALU operand register numbers in ID stage are
given by
* IF/ID.RegisterRs, IF/ID.RegisterRt

= | oad-use hazard when

e ID/EX.MemRead and
((ID/EX.RegisterRt = |IF/ID.RegisterRs) or
(ID/EX.RegisterRt = |F/ID.RegisterRt))

= |f detected, stall and insert bubble



How to Stall the Pipeline

* Force control values in ID/EX register
to 0

* EX, MEM and WB do nop (no-operation)

* Prevent update of PC and IF/ID register
e Using instruction is decoded again
e Following instruction is fetched again
 |-cycle stall allows MEM to read data for Iw
= Can subsequently forward to EX stage



Stall/Bubble in the Pipeline

Time (in clock cycles)

CC1 cC2 CC3 CC4 CC5 CC6

Program
execution
order

(in instructions)

w $2, 20($1) M
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or $8, $2, $6
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Stall/Bubble in the Pipeline

Time (in clock cycles) >
CC1 CC2 CC3 CC4 CC5 CCé6 CC7 cCs8 CC9 CcC 10

Program
execution
order

(in instructions)

lw $2, 20($1) IM

and becomes nop

and $4, $2, $5 stalled in ID

or $8, $2, $6 stalled in IF

add $9, $4, $2

DM Reg
—




Datapath with Hazard Detection
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Stalls and Performance

The BIG Picture

= Stalls reduce performance
e But are required to get correct results

= Compiler can arrange code to avoid hazards and
stalls

e Requires knowledge of the pipeline structure



Branch Hazards

= |f branch outcome determined in MEM

Time (in clock cycles) -
CC1 CC2 CC3 CC4 CC5 CC#s Ccc7 CcCcs8 Cca

Program
execution
order

(in instructions)

40 beq $1, $3, 28 H—I—E;r

44 and $12, $2, $5

48 or $13, $6, $2

52 add $14, $2, $2

—

172 Iw $4, 50($7)




Reducing Branch Delay

= Move hardware to determine outcome to |ID
stage
e Target address adder
e Register comparator

= Example: branch taken

36: sub $10, $4, $8
40: beq $1, $3, 7

44: and $12, $2, $5
48: or $13, $2, $6
52: add $14, $4, $2
56: slt $15, $6, $7

72: Iw  $4, 50($7)



Example: Branch Taken

and $12, $2, $5 beq $1, $3, 7 sub $10, $4, $8 before<1> before<2>
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Example: Branch Taken

Iw $4, 50($7)
IF.Flush

Bubble (nop) beq $1, $3, 7 sub $10, . .. before<1>
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