
Hanyang University – Computer Architecture [2019]

Large and Fast: Exploiting Memory
Hierarchy

Computer Architecture

2019 1학기

한양대학교공과대학컴퓨터소프트웨어학부
홍석준

Principle of Locality

 Programs access a small proportion of their
address space at any time

 Temporal locality
• Items accessed recently are likely to be accessed again

soon
• e.g., instructions in a loop, induction variables

 Spatial locality
• Items near those accessed recently are likely to be

accessed soon
• E.g., sequential instruction access, array data

§
5.1 Introduction

Taking Advantage of Locality

 Memory hierarchy
 Store everything on disk
 Copy recently accessed (and nearby) items from

disk to smaller DRAM memory
• Main memory

 Copy more recently accessed (and nearby) items
from DRAM to smaller SRAM memory
• Cache memory attached to CPU

Chapter 5 — Large and Fast: Exploiting
Memory Hierarchy — 4

Memory Hierarchy Levels
 Block (aka line): unit of copying

• May be multiple words
 If accessed data is present in upper

level
• Hit: access satisfied by upper level

 Hit ratio: hits/accesses
 If accessed data is absent

• Miss: block copied from lower level
 Time taken: miss penalty
 Miss ratio: misses/accesses

= 1 – hit ratio
• Then accessed data supplied from upper

level

Memory Technology

 Static RAM (SRAM)
• 0.5ns – 2.5ns, $2000 – $5000 per GB

 Dynamic RAM (DRAM)
• 50ns – 70ns, $20 – $75 per GB

 Magnetic disk
• 5ms – 20ms, $0.20 – $2 per GB

 Ideal memory
• Access time of SRAM
• Capacity and cost/GB of disk

§
5.2 M

em
ory Technologies

DRAM Technology
 Data stored as a charge in a capacitor

• Single transistor used to access the charge
• Must periodically be refreshed

 Read contents and write back
 Performed on a DRAM “row”

Advanced DRAM Organization

 Bits in a DRAM are organized as a rectangular
array
• DRAM accesses an entire row
• Burst mode: supply successive words from a row with

reduced latency
 Double data rate (DDR) DRAM

• Transfer on rising and falling clock edges
 Quad data rate (QDR) DRAM

• Separate DDR inputs and outputs

DRAM Generations

0

50

100

150

200

250

300

'80 '83 '85 '89 '92 '96 '98 '00 '04 '07

Trac
Tcac

Year Capacity $/GB

1980 64Kbit $1500000

1983 256Kbit $500000

1985 1Mbit $200000

1989 4Mbit $50000

1992 16Mbit $15000

1996 64Mbit $10000

1998 128Mbit $4000

2000 256Mbit $1000

2004 512Mbit $250

2007 1Gbit $50

DRAM Performance Factors

 Row buffer
• Allows several words to be read and refreshed in

parallel
 Synchronous DRAM

• Allows for consecutive accesses in bursts without
needing to send each address

• Improves bandwidth
 DRAM banking

• Allows simultaneous access to multiple DRAMs
• Improves bandwidth

Increasing Memory Bandwidth

 4-word wide memory
 Miss penalty = 1 + 15 + 1 = 17 bus cycles
 Bandwidth = 16 bytes / 17 cycles = 0.94 B/cycle

 4-bank interleaved memory
 Miss penalty = 1 + 15 + 4×1 = 20 bus cycles
 Bandwidth = 16 bytes / 20 cycles = 0.8 B/cycle

Flash Storage

 Nonvolatile semiconductor storage
• 100× – 1000× faster than disk
• Smaller, lower power, more robust
• But more $/GB (between disk and DRAM)

§
6.4 Flash Storage

Flash Types

 NOR flash: bit cell like a NOR gate
• Random read/write access
• Used for instruction memory in embedded systems

 NAND flash: bit cell like a NAND gate
• Denser (bits/area), but block-at-a-time access
• Cheaper per GB
• Used for USB keys, media storage, …

 Flash bits wears out after 1000’s of accesses
• Not suitable for direct RAM or disk replacement
• Wear leveling: remap data to less used blocks

Disk Storage
 Nonvolatile, rotating magnetic storage

§
6.3 D

isk Storage

Disk Sectors and Access

 Each sector records
• Sector ID
• Data (512 bytes, 4096 bytes proposed)
• Error correcting code (ECC)

 Used to hide defects and recording errors
• Synchronization fields and gaps

 Access to a sector involves
• Queuing delay if other accesses are pending
• Seek: move the heads
• Rotational latency
• Data transfer
• Controller overhead

Disk Access Example

 Given
• 512B sector, 15,000rpm, 4ms average seek time,

100MB/s transfer rate, 0.2ms controller overhead, idle
disk

 Average read time
• 4ms seek time

+ ½ / (15,000/60) = 2ms rotational latency
+ 512 / 100MB/s = 0.005ms transfer time
+ 0.2ms controller delay
= 6.2ms

 If actual average seek time is 1ms
• Average read time = 3.2ms

Disk Performance Issues

 Manufacturers quote average seek time
• Based on all possible seeks
• Locality and OS scheduling lead to smaller actual

average seek times
 Smart disk controller allocate physical sectors on

disk
• Present logical sector interface to host
• SCSI, ATA, SATA

 Disk drives include caches
• Prefetch sectors in anticipation of access
• Avoid seek and rotational delay

Cache Memory
 Cache memory

• The level of the memory hierarchy closest to the CPU
 Given accesses X1, …, Xn–1, Xn

§
5.3 The Basics of C

aches

 How do we know if
the data is present?

 Where do we look?

Direct Mapped Cache
 Location determined by address
 Direct mapped: only one choice

• (Block address) modulo (#Blocks in cache)

 #Blocks is a
power of 2

 Use low-order
address bits

Tags and Valid Bits

 How do we know which particular block is
stored in a cache location?
• Store block address as well as the data
• Actually, only need the high-order bits
• Called the tag

 What if there is no data in a location?
• Valid bit: 1 = present, 0 = not present
• Initially 0

Cache Example
 8-blocks, 1 word/block, direct mapped
 Initial state

Index V Tag Data
000 N
001 N
010 N
011 N
100 N
101 N
110 N
111 N

Cache Example

Index V Tag Data
000 N
001 N
010 N
011 N
100 N
101 N
110 Y 10 Mem[10110]
111 N

Word addr Binary addr Hit/miss Cache block
22 10 110 Miss 110

Cache Example

Index V Tag Data
000 N
001 N
010 Y 11 Mem[11010]
011 N
100 N
101 N
110 Y 10 Mem[10110]
111 N

Word addr Binary addr Hit/miss Cache block
26 11 010 Miss 010

Cache Example

Index V Tag Data
000 N
001 N
010 Y 11 Mem[11010]
011 N
100 N
101 N
110 Y 10 Mem[10110]
111 N

Word addr Binary addr Hit/miss Cache block
22 10 110 Hit 110
26 11 010 Hit 010

Cache Example

Index V Tag Data
000 Y 10 Mem[10000]
001 N
010 Y 11 Mem[11010]
011 Y 00 Mem[00011]
100 N
101 N
110 Y 10 Mem[10110]
111 N

Word addr Binary addr Hit/miss Cache block
16 10 000 Miss 000
3 00 011 Miss 011

16 10 000 Hit 000

Cache Example

Index V Tag Data
000 Y 10 Mem[10000]
001 N
010 Y 10 Mem[10010]
011 Y 00 Mem[00011]
100 N
101 N
110 Y 10 Mem[10110]
111 N

Word addr Binary addr Hit/miss Cache block
18 10 010 Miss 010

Address Subdivision

Example: Larger Block Size
 64 blocks, 16 bytes/block

• To what block number does address 1200 map?
 Block address = 1200/16 = 75
 Block number = 75 modulo 64 = 11

Tag Index Offset
03491031

4 bits6 bits22 bits

Block Size Considerations

 Larger blocks should reduce miss rate
• Due to spatial locality

 But in a fixed-sized cache
• Larger blocks ⇒ fewer of them

 More competition ⇒ increased miss rate
• Larger blocks ⇒ pollution

 Larger miss penalty
• Can override benefit of reduced miss rate
• Early restart and critical-word-first can help

Cache Misses

 On cache hit, CPU proceeds normally
 On cache miss

• Stall the CPU pipeline
• Fetch block from next level of hierarchy
• Instruction cache miss

 Restart instruction fetch
• Data cache miss

 Complete data access

Write-Through

 On data-write hit, could just update the block in
cache
• But then cache and memory would be inconsistent

 Write through: also update memory
 But makes writes take longer

• e.g., if base CPI = 1, 10% of instructions are stores,
write to memory takes 100 cycles
 Effective CPI = 1 + 0.1×100 = 11

 Solution: write buffer
• Holds data waiting to be written to memory
• CPU continues immediately

 Only stalls on write if write buffer is already full

Write-Back

 Alternative: On data-write hit, just update the
block in cache
• Keep track of whether each block is dirty

 When a dirty block is replaced
• Write it back to memory
• Can use a write buffer to allow replacing block to be

read first

Write Allocation

 What should happen on a write miss?
 Alternatives for write-through

• Allocate on miss: fetch the block
• Write around: don’t fetch the block

 Since programs often write a whole block before
reading it (e.g., initialization)

 For write-back
• Usually fetch the block

Example: Intrinsity FastMATH

 Embedded MIPS processor
• 12-stage pipeline
• Instruction and data access on each cycle

 Split cache: separate I-cache and D-cache
• Each 16KB: 256 blocks × 16 words/block
• D-cache: write-through or write-back

 SPEC2000 miss rates
• I-cache: 0.4%
• D-cache: 11.4%
• Weighted average: 3.2%

Example: Intrinsity FastMATH

Main Memory Supporting Caches

 Use DRAMs for main memory
• Fixed width (e.g., 1 word)
• Connected by fixed-width clocked bus

 Bus clock is typically slower than CPU clock
 Example cache block read

• 1 bus cycle for address transfer
• 15 bus cycles per DRAM access
• 1 bus cycle per data transfer

 For 4-word block, 1-word-wide DRAM
• Miss penalty = 1 + 4×15 + 4×1 = 65 bus cycles
• Bandwidth = 16 bytes / 65 cycles = 0.25 B/cycle

Measuring Cache Performance
 Components of CPU time

• Program execution cycles
 Includes cache hit time

• Memory stall cycles
 Mainly from cache misses

 With simplifying assumptions:

§
5.4 M

easuring and Im
proving C

ache Perform
anc

penalty Miss
nInstructio

Misses
Program

nsInstructio

penalty Missrate Miss
Program

accessesMemory

cycles stallMemory

××=

××=

Cache Performance Example

 Given
• I-cache miss rate = 2%
• D-cache miss rate = 4%
• Miss penalty = 100 cycles
• Base CPI (ideal cache) = 2
• Load & stores are 36% of instructions

 Miss cycles per instruction
• I-cache: 0.02 × 100 = 2
• D-cache: 0.36 × 0.04 × 100 = 1.44

 Actual CPI = 2 + 2 + 1.44 = 5.44
• Ideal CPU is 5.44/2 =2.72 times faster

Average Access Time

 Hit time is also important for performance
 Average memory access time (AMAT)

• AMAT = Hit time + Miss rate × Miss penalty
 Example

• CPU with 1ns clock, hit time = 1 cycle, miss penalty =
20 cycles, I-cache miss rate = 5%

• AMAT = 1 + 0.05 × 20 = 2ns
 2 cycles per instruction

Performance Summary

 When CPU performance increased
• Miss penalty becomes more significant

 Decreasing base CPI
• Greater proportion of time spent on memory stalls

 Increasing clock rate
• Memory stalls account for more CPU cycles

 Can’t neglect cache behavior when evaluating
system performance

	Large and Fast: Exploiting Memory Hierarchy
	Principle of Locality
	Taking Advantage of Locality
	Memory Hierarchy Levels
	Memory Technology
	DRAM Technology
	Advanced DRAM Organization
	DRAM Generations
	DRAM Performance Factors
	Increasing Memory Bandwidth
	Flash Storage
	Flash Types
	Disk Storage
	Disk Sectors and Access
	Disk Access Example
	Disk Performance Issues
	Cache Memory
	Direct Mapped Cache
	Tags and Valid Bits
	Cache Example
	Cache Example
	Cache Example
	Cache Example
	Cache Example
	Cache Example
	Address Subdivision
	Example: Larger Block Size
	Block Size Considerations
	Cache Misses
	Write-Through
	Write-Back
	Write Allocation
	Example: Intrinsity FastMATH
	Example: Intrinsity FastMATH
	Main Memory Supporting Caches
	Measuring Cache Performance
	Cache Performance Example
	Average Access Time
	Performance Summary

